

Microalgae working for a cleaner planet: waste valorization, resource recovery and circular innovation

Luísa Barreira

- Associate Professor Department of Chemistry and Pharmacy from the Faculty of Sciences and Technology, University of Algarve
- Principal Researcher, Centre of Marine Sciences (CCMAR), co-leader of the Marine Biotechnology Group
- Member of the GreenCoLab non-profit private organization, a collaborative platform to bridge the transfer of knowledge from academia, industry, stakeholders, and consumers.
- Researcher in microalgae for 16 years

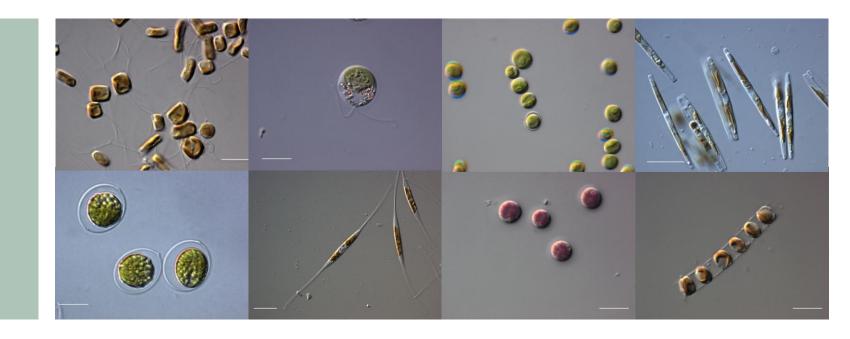
Davide Liberti

- Post-Doc Centre of Marine Sciences (CCMAR), coordinator of the scientific area of Bioremediation and wastewater treatment from MarBiotech
- PhD in Biotechnology at Università degli studi di Napoli Federico II

Researcher in microalgae for 6 years

Research lines:

- Microalgal bioprospection, culture scale-up,
 and strain improvement
 - Algae as functional food and feed
- Algal biomedical applications (nutraceuticals, cosmeceuticals, pharmaceuticals)
- Bioremediation, wastewater treatment, and nutrient recycling within the concept of circular economy



Microalgae and Cyanobacteria

Photosynthetic microorganisms

- Unicellular or colonial
- Eukaryotic or prokaryotic (cyanobacteria)
- Freshwater or marine species
- Size 0.2 200 μm
- Different colours (pigment composition)
- Different shapes

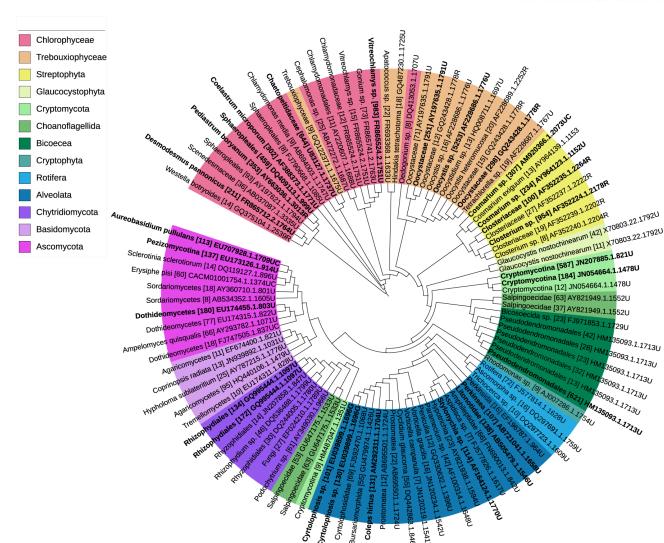
Microalgae Industrial Cultivation

Open systems

Low energy demand Less control Possible contaminations

Closed systems

High control
High energy consumption
Very low risk of contamination

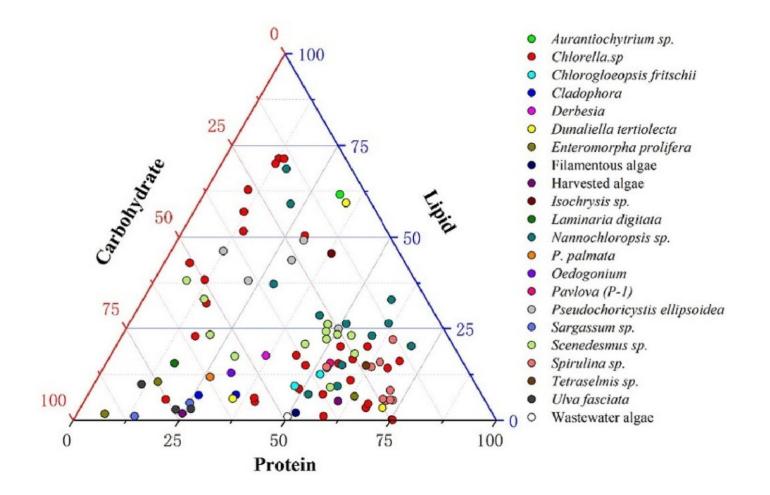


Biodiversity

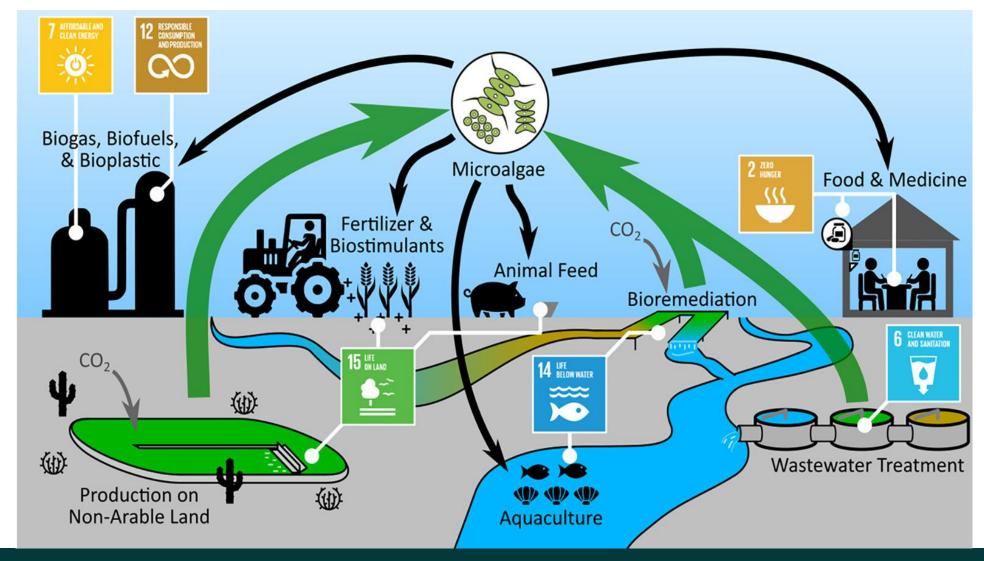
Microalgae have been estimated to include anything between 200,000 to 800,000 species

Less than 50,000 are described

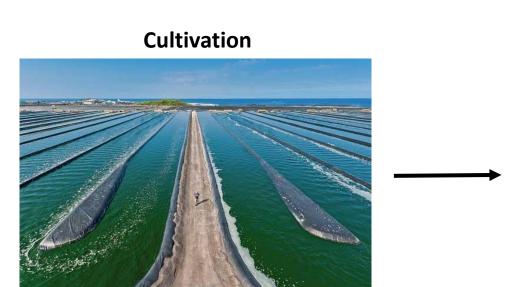
Less than 50 are cultivated at industrial scale

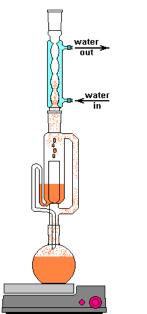


Proximal Composition



Applications

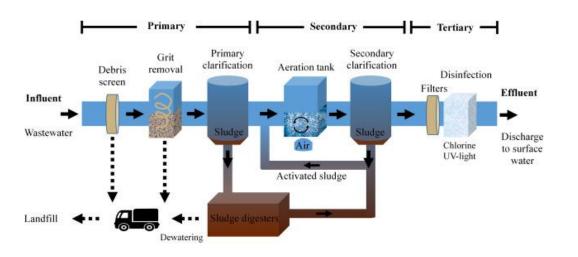




Biofuels production

Lipids extraction

Biofuels



Bioremediation

Water Framework Directive / Wastewater Treatment Regulation

Regularly updated Lower limits for Nitrogen and Phosphorous Higher coverage for smaller towns and rural areas Extended list of emerging pollutants

https://environment.ec.europa.eu/topics/water/water-framework-directive en

https://eur-lex.europa.eu/eli/dir/2024/3019/oj/eng

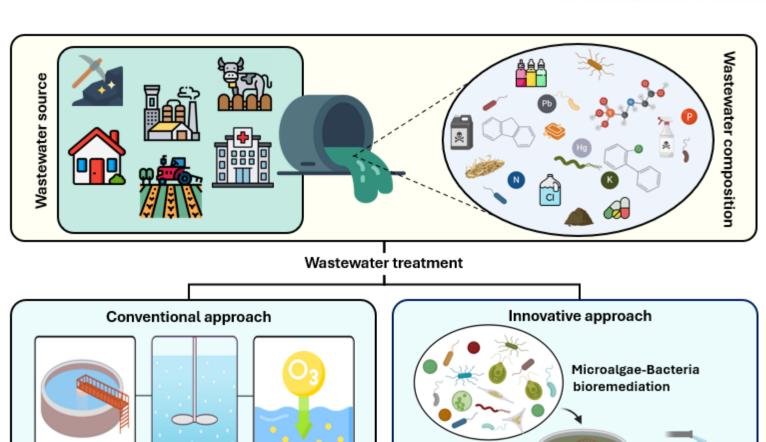
Primary

treatment

Secondary

treatment

Low efficiency

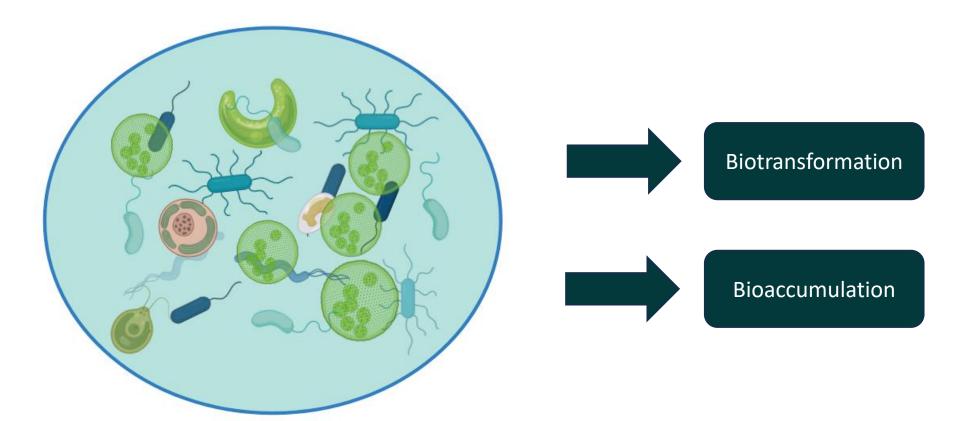

High economic and energy costs

Tertiary

treatment

Conventional Wastewater Treatment

Improved water quality


Biomass production for further applications

Bioremediation

- Nitrogen
- Phosphorous
- Heavy Metals
- PolychlorinatredByphenyls (PCBs)
- Polycyclic Aromatic
 Hydrocarbons
 (PAHs)
- Pesticides
- PolyFluoroAlkylSubstances (PFAS)
- Pharmaceuticals

PFOA	37	Synechocystis sp.	Labscale		
PFOS	88	Synechocystis sp.	Labscale		
Pesticides					
Dimethomor ph	24	Tetradesmus obliquus	Labscale		
	15	Tetradesmus quadricauda	Labscale		
Isoproturon	54	Tetradesmus obliquus	Labscale		
	58	Tetradesmus quadricauda	Labscale		
Pyrimethanil	7.0	Tetradesmus obliquus	Labscale		
r yriinethanii	10	Tetradesmus quadricauda	Labscale		
Chlorpyrifos	97	Chlorella sp. and Scenedesmus sp.	Labscale		
Oxadiazon	88	Chlorella sp. and Scenedesmus sp.	Labscale		
Cypermethri	74	Chlorella sp. and Scenedesmus sp.	Labscale		
n		Heavy metals			
		Scenedesmus			
Arsenic	40.7	almeriensis	Labscale		
Arsenic	48	Ulva Ratioulata	Labscale		
	59.5	Ulva Reticulata Scenedesmus	Labscale		
Boron	38.6	almeriensisis	Labscale		
	86	Phormidium ambiguum	Labscale		
Cadmium	58	Desmodesmus sp. MAS1	Labscale		
	17	Chlorococcum humicola	Labscale		
	75	Porphyra leucosticta	Labscale		
	95	Oedogonium westi	Labscale		
	93.38	Enteromorpha intestinalis	Labscale		
	66	Cladophora glomerata	Labscale		
Chromium	80	Pseudochlorella pringsheimii	Labscale		
	93	Oedogonium westi	Labscale		
	85	Cystoseira barbata	Labscale		
	85	Cystoseira crinita	Labscale		
Cobalt	44	Chlorococcum humicola	Labscale		
	80	Desmodesmus sp. AARLG074	Labscale		
Copper	88	Chlorophyceae spp.	Labscale		
	86	Ulva lactuca Chlorococcum	Labscale		
Iron	74.47	humicola	Labscale		
	100	Gelidium amansii	Labscale		
Lead	61-97	Oedogonium westi Phormidium	Labscale		
	70	ambiguum	Labscale		
	95	Porphyra leucosticta	Labscale		
Manganese	99.4	Chlorella vulgaris	Labscale		
	74	Ulva lactuca	Labscale		
Mercury	98	Ulva lactuca	Labscale		
	97	Phormidium ambiguum	Labscale		
Nikel	59-89	Oedogonium westi	Labscale		

Installation

PCBs				
n.a	Chlandla managaidean	Spiked culture	Laborata	
n.a	Chlorella pyrenoidosa	medium	Labscale	
n.a				
n.a			Labscale	
n.a				
n.a	Chlamydomonas reinhardtii	Spiked culture		
n.a	Chiamyaomonas reinnaratii	medium		
n.a				
Pharmaceu	ticals			
99				
99			Labscale	
not	Chlorella sp. and Scenedesmus sp.	Urban wastewater		
removed				
29.99	Chlorella sorokiniana			
21.58	Chlorella vulgaris	Spiked culture	Labscale	
79.09	Scenedesmus obliquus	medium		
>99				
>99				
36-85				
10-69		Domestic	Pilot	
33-100	Natural microalgal consortium	wastewater	outdoor	
93			outdoor	
30-57				
49				
		Domestic	Pilot	
37-53	Natural microalgal consortium	wastewater	outdoor	
>99	Chlorella vulgaris	Aqueous media	Labscale	
85.3	. 3	,		
>91				
>36				
17-53				
not	Natural microalgal consortium	Domestic	Pilot	
removed		wastewater	outdoor	
>99				
51.3				
78				
			Pilot	
0.01.100	Natural microalgal consortium	Urban wastewater		
0.91-100			outdoor	

PAHs			
∑PAHs	89-99	Nannochloropsis oculata	Labscale
∑PAHs	91-98	Chlorella vulgaris	Labscale
Benzo[a]anthra	68-92 62-87	Selenastrum capricornutum and Scenedesmus acutus	Labscale
Benzo[a]pyrene			
Phenanthrene	86.64 Nostoc calciola 46.67 Scenedesmus sp.		Labscale
Filenantinene	73.13 82.7	Chlorella sp. Anabaena sp.	
	77.31	Leptolyngbya fragilis	
Pyrene	78.71 95	Chlorela sp. Oscillatoria sp.	Labscale
Benzo[a]anthra cene	77.7-90.9	Selenastrum capricornutum	Labscale

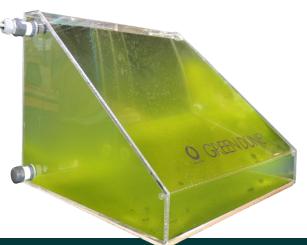
Wastewater Treatment With Microalgae

Advantages:

Sustainable system

Viable costs

Biomass production

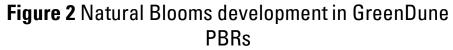

Less CO₂ and GHG emissions

High land requirements in standard cultivation systems

GREENDUNE PHOTOBIOREACTORS

- ✓ High volume/area ratio: 480 L m⁻²
- ✓ Modular systems
- ✓ Connected in sequence or in parallel to achieve the total volume required

The aim of this study was to evaluate microalgae biomass production, and tertiary treatment efficiency of urban wastewater using natural microalgal consortium in pilot GreenDune PBRs



Wastewater Treatment With Microalgae

A) Stabilization phase and **B)** During the experiments

Experimental set-up with 3 sequential modules with a total working volume of 1440L installed at wastewater treatment plant at Algarve, Portugal

DAILY ANALYSIS

<u>Cell growth control</u>	<u>i reatment emiciency</u>
✓ pH measurements	✓ total-N

✓ Optical density (750 nm) ✓ N-NH₄, ✓ N-NO₃

OUTDOOR CONDITIONS

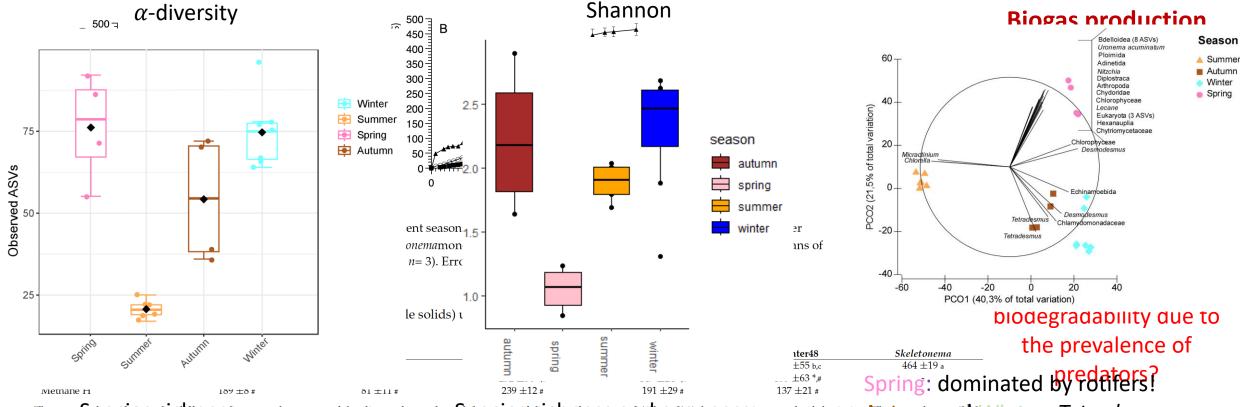
Continuous operational mode

- ✓ Spring (June 2020) HRT 24 h and 12 h
- ✓ Summer (August 2020) HRT 24 h and 48 h Natural Bloom Culture
- √ 7 days of stabilization
- √ 12 days of culture

Wastewater Treatment With Microalgae

HRT – 24h, 48h (Winter, Summer, Autumn) HRT – 12h, 24h (Spring)

Water reuse for for seed production or irrigation of naturally restricted use areas



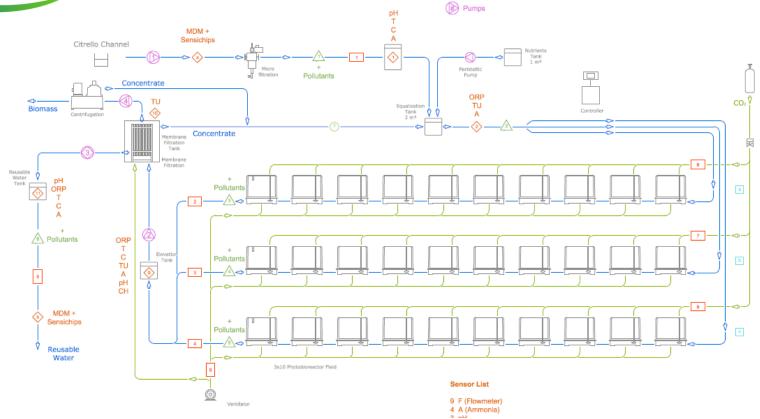
Wastewater Treatment With Microalgae: Green Treat

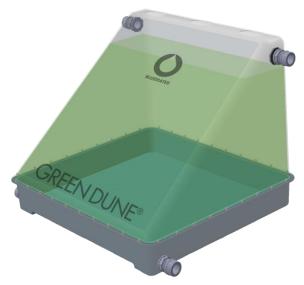
The repospecies richness etween the means of the digested sample as pecies richness named actiation. The same team of the digested sample as pecies richness named eventues and deviation. The same team of the digested sample as pecies richness species richness species richness eventues to compare methan production. Tetrades species richness species richness eventues to compare methan production between non-hydrolyzed and hydrolyzed conditions of the same season indicate no statistical difference between tested conditions.

Summer: Chlorella sp.

Case study:

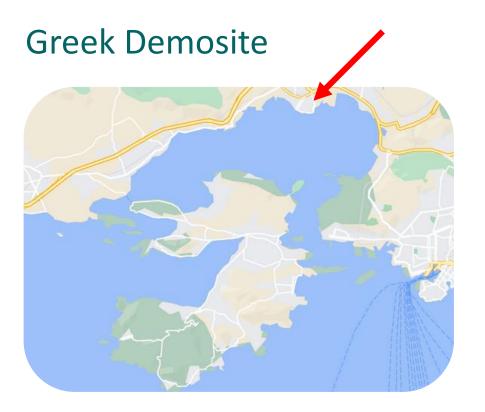
Responsive hub for long term governance to destress the Mediterranean Sea from chemical pollution (RHE-MEDiation)





Case study: RHE-MEDiation Project

"Emerging pollutants are defined as compounds that are not currently covered by existing water-quality regulations, have not been studied before, and are thought to be potential threats to environmental ecosystems and human.health and safety" Farré et al. 2008



Located in Greece, Elefsina, and its gulf, is a suburban city from Athens metropolitan area. It is situated in the Thriasio Plain and it is a major industrial centre, with the largest oil refinery in Greece Taking into account previous collected data, the bioreactors will be placed after the secondary wastewater treatment, to remove excess nutrients and pollutants not removed by the currently implemented system.

Turkish Demosite

Located in Turkey, Izmit Bay is a semi-closed embayment situated in the Marmara Sea. Residential and industrial areas in the region have increased threefold since 1980s, thus increasing the pollution.

In Dilovasi, the bioreactors will befed with primarily treated wastewater, therefore conducting most of the treatment, to demonstrate their versatility.

Case study: RHE-MEDiation Project

Located in south Italy, Mare piccolo is a bay surrounded by Taranto city. In the past, it has been overloaded with pollutants from several sources, ILVA above all. The aim is to prevent further accumulation of pollutants in the seawater of Mare Piccolo, pumping water from Galeso River. Mare Piccolo is very important for muscles aquaculture, a very well known specialty from Taranto.

List of major contaminants deemed to be removed from EU waters and are in line with the RHE-MEDiation GA, based on the Directive 2013/39/EU (WFD) and the Proposal (for a Directive of the EU and of the Council) amending Directives 2000/60/EC, 2006/118/EC and 2008/105/EC. In blue: compounds common within the WFD and its proposed amendment.

Pesticides	PFAS/PFOS	Pharmaceuticals	Metals	PAHs	PCBs
Aldrin	Perfluorohexane sulfonic acid (PFHxS)	17 alpha-ethinylestradiol	Cd	Anthracene	PCB 77 (Dioxin-like)
Dieldrin	Perfluorononanoic acid (PFNA)	17 beta-estradiol	Pb	Naphthalene	PCB 81 (Dioxin-like)
Endrin	Perfluorobutane sulfonic acid (PFBS)	Azythromycin	Hg	Fluoranthene	PCB 105 (Dioxin-like)
Isodrin	Perfluorohexanoic acid (PFHxA)	Erythromycin	Ni	Benzo[a]pyrene	PCB 114 (Dioxin-like)
Atrazine	Perfluorobutanoic acid (PFBA)	Diclofenac	Ag	Benzo[b]fluoranthene	PCB 118 (Dioxin-like)
Chlorpyrifos	Perfluoropentanoic acid (PFPeA)	Ibuprofen		Benzo[k]fluoranthene	PCB 123 (Dioxin-like)
DDTs	Perfluoropentane sulfonic acid (PFPeS)	Carbamazepine		Benzo[g,h,i]perylene	PCB 126 (Dioxin-like)
Trifluralin	Perfluorodecanoic acid (PFDA)	Clarithromycin		Indeno[1,2,3-cd]pyrene	PCB 156 (Dioxin-like)
Clothianidin	Perfluorododecanoic acid (PFDoDA)	Estrone		Chrysene	PCB 157 (Dioxin-like)
Diuron	Perfluoroundecanoic acid (PFUnDA)			Benzo[a]anthracene	PCB 167 (Dioxin-like)
Endosulfan	Perfluoroheptanoic acid (PFHpA)			Dibenz[a,h]anthracene	PCB 169 (Dioxin-like)
Hexachlorobenzene	Perfluorotridecanoic acid (PFTrDA)				PCB 189 (Dioxin-like)
Hexachlorocyclohexane	Perfluoroheptane sulfonic acid (PFHpS)				
Deltamethrin	Perfluorodecane sulfonic acid (PFDS)				
Esfenvalerate	Perfluorotetradecanoic acid (PFTeDA)				
Isoproturon	Perfluorohexadecanoic acid (PFHxDA)				
Pentachlorophenol	Perfluorooctadecanoic acid (PFODA)				
Dicofol	Ammonium perfluoro (2-methyl-3-oxahexanoate) (HFPO-DA or Gen X)				
Aclonifen	Propanoic Acid / Ammonium 2,2,3-trifluoro-3-(1,1,2,2,3,3-hexafluoro-3-(trifluoromethoxy)propoxy)propanoate (ADONA)				
Bifenox	2- (Perfluorohexyl)ethyl alcohol (6:2 FTOH)				
Dichlorvos	2-(Perfluorooctyl)ethanol (8:2 FTOH)				
Heptachlor/ Heptachlor epoxide	Acetic acid / 2,2-difluoro-2-((2,2,4,5-tetrafluoro-5-(trifluoromethoxy)-1,3-dioxolan-4-yl)oxy)-(C6O4)				
Terbutrin	Perfluorooctanoic acid (PFOA)				
Acetamiprid	Perfluorooctane sulfonic acid (PFOS)				
Bifenthrin					
Glyphosate					
Imidacloprid					
Nicosulfuron					

Greek Demo Site

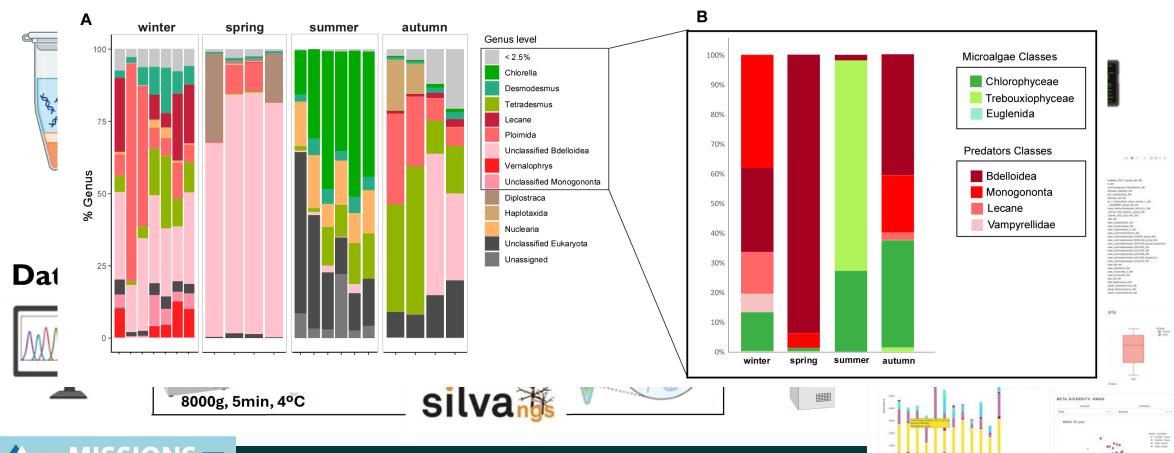
Preliminary results

Starting point

After one month

Turkish Demo Site

Turkish Demo Site



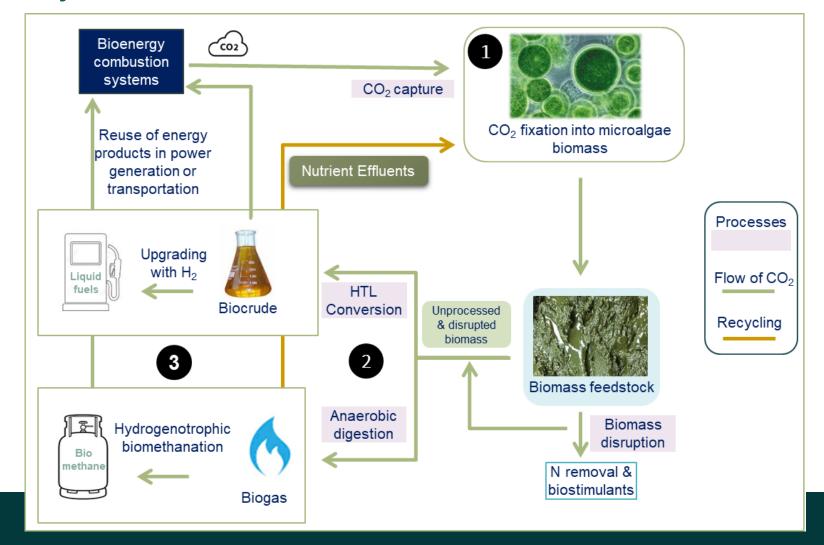
Metagenomic Analyses

Lab Work

Community characterization ASS reason teriplots

Case study:

Biogenic CO₂ capture into Sustainable Energy Carriers - A novel photosynthetic and hydrogenotrophic CO₂ fixation combined with waste nutrient upcycling for production of carbon negative energy carriers.



Project

Case study: COSEC Project Work Pipeline – Strain selection

Task 2.1. Optimise fixation of biogenic CO₂ and residual nutrients into microalgae biomass

Task 3.1: Strain development for improved resilience to flue gases and production of lipid rich biomass

Textile wastewater

Switzerland

Urban wastewater

Case study: COSEC Project Work Pipeline – Strain improvement

sub-lethal concentration for metabolic inhibitors

Random

Mutagenesis
EMS (Ethyl methanesulfonate)

Cell viability

2

Random Mutagenesis

Apply the screening on metabolic inhibitors

Resistant strains isolation and phenotypic stability

1.Flow Cytometry 2.Bligh and Dyer

Case study: COSEC Project Work Pipeline – Strain improvement

Determine the **lethal** and **sub-lethal** concentration for **metabolic inhibitors**

Random
Mutagenesis
EMS (Ethyl methanesulfonate)

Cell viability

Random Mutagenesis

Apply the screening on metabolic inhibitors

Resistant strains isolation and phenotypic stability

Validation of improved traits

1.Flow Cytometry

2.Bligh and Dyer

Final Considerations

- Versatile Applications: Microalgae have potential in various sectors from biofuels to nutraceuticals and animal feed
- Sustainability Challenge: Large-scale production requires improvements in economic, energetic, and environmental sustainability
- Wastewater as a Resource: Wastewaters are nutrient-rich (N and P), making them ideal for microalgal growth and offering a low-cost, eco-friendly cultivation method
- **Biorefinery Approach**: Coupling microalgae cultivation with wastewater treatment enables contaminant removal while producing valuable biomass
- Environmental Benefits: This approach mitigates environmental impacts from synthetic media and traditional effluent treatments
- Need for Research & Guidelines: Few large-scale studies exist; fundamental design and operational guidelines are still lacking
- **Technology Readiness Gap**: Advancing from TRL 3 to TRL 9 is essential for commercial deployment and meeting real-world demands

Conclusions

- The use of microalgae in wastewater treatment can be economically viable, with positive energy balances
- More pilot or demonstration-scale studies are needed to better assess real process costs
- Natural microalgal consortia may be easier to manage than specific strains due to greater adaptability
- The resulting biomass can be valorised as: biofuels, biostimulants / biofertilizers, and animal feed
- It is essential to assess the biomass's chemical composition and presence of toxic compounds before defining its application
- Main limitation of microalgae-based systems: large area requirement due to light dependence and long hydraulic retention times
- Solutions under development:
 - Vertical systems
 - Reactors with higher volume-to-area ratios
- Advantages over conventional treatments:
 - Efficient removal of emerging pollutants
 - Reduction of environmental impacts and treatment costs
- Promising application in rural areas or developing countries, where land availability is higher and treatment systems are often lacking

lbarreir@ualg.pt

dliberti@ualg.pt