Marine geohazards

Safeguarding society and the Blue Economy from a hidden threat
European Marine Board IVZW

The European Marine Board provides a pan-European platform for its member organizations to develop common priorities, to advance marine research, and to bridge the gap between science and policy in order to meet future marine science challenges and opportunities.

The European Marine Board is an independent and self-sustaining science policy interface organization that currently represents 35 Member Organizations from 18 European countries. It was established in 1995 to facilitate enhanced cooperation between European marine science organizations towards the development of a common vision on the strategic research priorities for marine science in Europe. The EMB promotes and supports knowledge transfer for improved leadership in European marine research. Its membership includes major national marine or oceanographic institutes, research funding agencies and national consortia of universities with a strong marine research focus. Adopting a strategic role, the European Marine Board serves its member organizations by providing a forum within which marine research policy advice is developed and conveyed to national agencies and to the European Commission, with the objective of promoting the need for, and quality of, European marine research.

www.marineboard.eu

European Marine Board Member Organizations
Marine geohazards

Safeguarding society and the Blue Economy from a hidden threat

European Marine Board IVZW – Position Paper 26
This Position Paper is a result of the work of the European Marine Board Expert Working Group on Marine Geohazards. See Annex 1 for the list and affiliations of the Working Group members.

Working Group Chairs
Heidrun Kopp, Francesco Latino Chiocci

Contributing Authors
Christian Berndt, Namik Çağatay, Teresa Ferreira, Juana Fortes, Eulàlia Gràcia, Alba González Vega, Achim Kopf, Mathilde B. Sørensen, Nabil Sultan, Isobel Yeo

Series Editor
Sheila J J Heymans

Publication Editors
Ángel Muñiz Piniella, Paula Kellett, Rebecca van den Brand, Britt Alexander, Ana Rodríguez Perez, Jana Van Elslander, Sheila J. J. Heymans

External Reviewers
David Coetzee, Sarah-Jayne McCurrach, Dimitris Sakellariou

Internal Review Process
The content of this Position Paper has been subject to internal review, editorial support and approval by the European Marine Board Member Organizations.

Suggested reference

www.marineboard.eu
info@marineboard.eu

Design
Zoeck

We acknowledge the work of Amber Moreels, Amber Devreker, Ellis Deleeck and Margaux Vandevelde, from the Artevelde University of Applied Sciences, in designing and creating the infographics used in this document. Additional scientific input was kindly provided by Gemma Ercilla and David Casas (CSIC-ICM), Daniele Casalbore (University of Rome “Sapienza”) and Paolo Tommasi (CNR-IGAG).

November 2021
Foreword

In September 2021, the eruption of the Cumbre Vieja volcano on La Palma in the Canary Islands made global headlines. Images of lava flowing down the mountain and people losing everything they own encapsulated our feeling of powerlessness when facing such a geological catastrophe. This caused me to recall other paroxysmal explosive eruptions in history which led to huge loss of life and major geopolitical changes (e.g. Santorini, Vesuvius, Tambora, Krakatau) and the impact of tsunamis such as those in Indonesia and Japan, in 2004 and 2011 respectively. We should also not forget the largest underwater eruption ever recorded and evidenced, which took place in 2019 giving birth to a massive new volcano near Mayotte and leading to a 15 cm subsidence of the island. In Europe, geological hazards (such as volcanoes and tsunamis) are a fact of life and will occur in the future without warning. At present, there is limited awareness of the geological hazards present in European seas, such as groundwater seepage or submarine landslides. Threats to society from marine geohazards include harm to people and property, the devastation and disappearance of valuable land near the shoreline, and the destruction of seafloor installations (e.g. communication cables, pipelines).

Europe is looking at the opportunities provided by our coasts to achieve the ambitious objectives of the European Green Deal. However, with an increasing number of human activities conducted in the marine environment and the increasing human population on European coasts, society will be more exposed and vulnerable to marine geohazards. Our only option is therefore to increase our knowledge of marine geohazards and hence to inform measures to reduce our exposure and vulnerability to these events. We want a safe Ocean where lives and livelihoods are protected from Ocean-related hazards. This is one of the societal outcomes that the United Nations Decade of Ocean Science for Sustainable Development (2021 – 2030) strives towards.

The topic of marine geohazards has been discussed at the European Marine Board (EMB) since 2015, including a dedicated Open Session at the EMB Autumn Plenary Meeting in Trieste, Italy, in 2018. Marine geohazards was selected as a new activity at the EMB Spring Plenary Meeting in Paris, France, in 2019. The aim is to direct political attention to the topic at European and international level by highlighting the impacts on society and the Blue Economy. In February 2020 the EMB Working Group on ‘Marine Geohazards’ kicked-off with a meeting in Rome, Italy. Working online during the COVID-19 pandemic, this Position Paper is the primary output of this group. It aims to inform changes in management practices and policies that protect the population and economic activities at sea, while also highlighting the need for increased knowledge on processes, triggers and precursors of marine geohazards.

On behalf of the European Marine Board, I would like to thank the members of the EMB ‘Marine Geohazards’ Working Group, the external reviewers, and additional contributors (Annex I and II) for delivering such a comprehensive Position Paper during such a difficult time. My thanks also go to the EMB Secretariat, for their work in coordinating the Working Group and the synthesis and publication of this document, namely Ángel Muñiz Piniella, Paula Kellett, Rebecca van den Brand, Britt Alexander, Ana Rodríguez Perez, Jana Van Elslander and Sheila Heymans. Finally, I would like to thank Amber Moreels, Amber Devreker, Ellis Deleeck and Margaux Vandeveld (students from the Artevelde University of Applied Sciences in Belgium) for designing and creating the infographics used in this document to illustrate these complex issues in a simple way.

Gilles Lericolais
Chair, European Marine Board IVZW
November 2021
Table of Contents

- Foreword
- Executive Summary
 - Introduction: A hidden threat to Europe?
 - What is a marine geohazard?
 - Earthquakes
 - Volcanoes
 - Tsunamis
 - Submarine mass movements
 - Fluid activity and its manifestations
 - Migrating bedforms
 - Human induced and technological hazards
 - Cascading and/or cumulative events
 - Where do marine geohazards occur in European Seas?
 - Plate tectonics in Europe
 - Atlantic Ocean
 - The Mediterranean Sea
 - The Western Mediterranean
 - The Eastern Mediterranean
 - The Black Sea
 - High-latitude and Epicontinental Seas
 - How do marine geohazards impact society and the Blue Economy?
 - Impact on coastal communities, livelihoods and loss of lives
 - The 1755 Lisbon earthquake and tsunami (Portugal, Gulf of Cadiz, Morocco)
 - The 1908 Messina earthquake and tsunami (Sicily, Calabria)
 - The 1999 Eastern Marmara earthquake and tsunami (Turkey)
 - Impact on coastal infrastructure
 - Impact on offshore infrastructures
 - Impact on tourism and fisheries
 - Perception and consideration of marine geohazards by society, industry and public authorities
 - How can science transform hazard assessment in Europe?
 - Characterizing past geohazard events and assessing their frequency
 - Monitoring active processes and understanding their dynamics and mechanisms
 - Repeated bathymetry surveys
 - Monitoring seafloor deformation
 - Drilling the seafloor to understand geohazards at depth
 - Observing physical parameters governing geohazards
 - Underwater vehicles
 - Recording and recognizing precursors to geohazards
 - Defining hazard through numerical and physical modelling
 - Recommendations
 - Advancing hazard mitigation for policy making and the Blue Economy
 - Science needed to understand processes, triggers and precursors
- References
- Glossary
- List of Abbreviations
- Annex II: External Reviewers and additional contributors
Executive Summary

Marine geohazards pose a significant threat to the European coastal population and to the development of the Blue Economy. This Position Paper discusses the type (Chapter 2), distribution (Chapter 3) and impact (Chapter 4) of marine geohazards on the European coastal regions and the Blue Economy, as well as what and how novel scientific approaches may broaden our understanding of their trigger mechanisms and drive a risk-mitigating European policy (Chapter 5). This document focuses on short-onset geological hazards and does not deal with long-term processes such as coastal erosion, land subsidence, intrusion of salt water in coastal aquifers; or with hazards associated by atmospheric disturbances such as storm surges and meteotsunamis. This document is primarily aimed at local, regional, national and European institutions in charge of managing risk assessments & mitigation, land and sea management, funding research, monitoring and infrastructures, and public awareness of hazards. In addition, this document may also be relevant to the scientific community interested in, or exploring this subject, and to stakeholders outside Europe, in light of the United Nations Decade of Ocean Science for Sustainable Development (2021-2030).

Large but (luckily) infrequent events attract most public attention and media coverage (such as tsunamis and volcanic eruptions), and prompt changes in policies for reducing future risks. However, for the management of the marine and coastal areas, smaller but more frequent events that produce localized, though severe disasters, should also be considered, especially in regions with high density populations, living or working near the coast and regions, hosting substantial infrastructure or serving as tourist destinations. The only hazards that can be defined with confidence in the European seas are those related to volcanic eruptions, earthquakes and earthquake-generated tsunamis, as those are the only hazards that have adequate instrumental data. More detailed studies are required to undertake a comparable census and understanding of landslides, fluid escape features and migrating bedform fields. In addition, engineering projects may generate human-induced geohazards such as landslides and related tsunamis. Often cascading or cumulative events may worsen the impact of a single event, demonstrating the need to move towards a multi-hazard approach.

The increasing population density on European shores implies higher risks resulting from marine geohazards. Today, our society is more dependent on critical infrastructure such as ports, roads and telecommunication cables. While the industry understands the widespread presence and relevance of marine geohazards, the general public, policy makers and public authorities remain largely unaware of these hazards. Increasing our knowledge of geohazard triggers and processes is needed to raise the general awareness and to implement specific legislation, framing marine geohazards into pro-active action that would mitigate the risk.
Considering that geological hazards are unavoidable and will certainly continue to occur in the future, mitigation measures (for risk reduction) should therefore be focused on decreasing the risk (exposure and vulnerability) and increasing resilience. These measures should be based on the scientific knowledge of events that occurred in the past, their triggering mechanisms and the propagation of their consequences. To achieve this, we recommend to:

- Include marine geohazards as natural hazards in all policies relating to risk mitigation and land management, at European, regional, national and local levels.
- Consider marine geohazards in local, national and EU marine and maritime legislation such as the EU Marine Spatial Planning Directive, and legislation pertaining to Integrated Coastal Zone Management, and that pertain to the safe development of the Sustainable Blue Economy.
- Require that public authorities use all seafloor infrastructure installations for environmental and geohazards monitoring.
- Develop probabilistic scenarios of marine geohazard risks for all major coastal settlements and industrial infrastructures.
- Establish a stakeholder forum to identify knowledge gaps and technological needs. This could be achieved through the development of specific EU research programs on marine geohazards.
- Set up a field laboratory for marine geohazards at a focus site in Europe to concentrate research, facilities and in situ modelling.
- Promote a common standard for marine geohazard interpretation and mapping to ensure the safe development of the Blue Economy.
- Combine long-term in situ monitoring with geohazard studies in the surrounding region to identify long-range signals.
- Support technological advancement in order to improve the detection capability and availability of sensors.
- Create holistic databases of raw data and homogeneous interpretations and make them available to the scientific community to apply advanced techniques in support of marine geohazard studies.
Introduction
A hidden threat to Europe?
Nearly half of Europe’s population lives in coastal regions (Figure 1.1.) and this number is increasing (Hugo, 2011; Margaras, 2019). The high population density along our coasts and the expected growth of complex critical infrastructure and Ocean services in coastal regions lead to mounting levels of exposure and vulnerability to marine geohazards. Underlying drivers including rapid urbanization, complex supply chains, and increase in communication and navigation infrastructure, and the effects of climate change on geological conditions further raise the level of risk to communities and the Blue Economy.

The Blue Economy accounted for 1.5% of the European economy and 2.2% of employment in 2018 (European Commission, 2020; Scholaert et al., 2020). These figures are expected to increase in the near future due to the expansion of coastal settlements and infrastructure, growth in shipping industry for transportation of goods and people, the increased production of renewable energy from wind, tides and waves, and the ongoing exploitation of marine resources (raw minerals, aggregates, fish processing and aquaculture) (OECD, 2016). To guarantee safe and sustainable growth of the Blue Economy, the assessment of marine geological hazards (or geohazards) is needed; yet to date this is not included in the marine-related directives and initiatives such as the Maritime Spatial Planning (MSP) Directive, Integrated Coastal Zone Management (ICZM), or the Marine Strategy Framework Directive (MSFD).

Figure 1.1. Coastal regions in Europe based on the nomenclature of territorial units for statistics (NUTS) 2021. We acknowledge that the French outermost region of Saint-Martin is not shown on the image. Administrative boundaries: © EuroGeographics © UN-FAO © Turkstat. Cartography: Eurostat – GISCO, 02/2021
Marine geohazards related to seafloor processes include earthquakes (the most destructive earthquakes that have affected humanity have occurred at sea), landslides, volcanic eruptions and the tsunamis associated with these. Marine geohazards can also include rapid changes on the seafloor such as migrating bedforms, seabed liquefaction and gas migration that can lead to local overpressure in sediments and potential underwater landslides (see Chapter 2 for more information). To date, most of the geohazard features that occur on the seafloor are unknown, ill-characterized, and difficult to monitor (with present-day technology).

Hazards are intimately linked to risk (Figure 1.2). A risk is the probability of an event causing potential loss of life, injury, or destruction or damage of assets, which could occur to a system, society or a community within a specific period of time. A risk is therefore determined as the product of three factors: the hazard, i.e. the probability that a given event will occur in a given time; the exposure, i.e. the human lives and the amount and value of the items exposed to the hazardous event; and the vulnerability, i.e. the amount of damage that the event will cause to the exposed items. The tsunami risk is, for instance, the product of the likelihood that a tsunami occurs (H), the number of people and amount of property and systems that are present on the coast affected by the tsunami and subject to potential losses (E) and the damage they will suffer by that event (V):

\[R = (H \times E \times V) \]

In this formula, if one factor is zero, the risk is also zero. For instance, there is no risk if a tsunami occurs on an unpopulated desert coast (E=0), or in an area where there will be no damage because of tsunami-resistant construction (e.g. well above sea level) and because early-warning and safety procedures are fully effective (V=0).

Marine geohazards will result either in dangerous or catastrophic events with the associated risk to life, infrastructure and the environment involving several nations (in this report referred to as "intensive risk") or in smaller events that are widespread and pervasive in certain areas and threaten regional marine and coastal communities and infrastructure (referred to as 'extensive risk') (see Box 1). The United Nations Office for Disaster Risk Reduction (UNDRR) define intensive risk as a disaster risk associated with low-probability, high-impact events, whereas extensive risk is a disaster risk associated with high-probability, lower-impact events.
BOX 1: A SMALL LANDSLIDE CAN BE AS DANGEROUS AS A LARGE ONE

A hazard, an important factor driving risk, can be seen as the product of the frequency (recurrence in time) of a given phenomenon and the magnitude (severity and extension of effects).

\[\text{Hazard} = \text{Frequency} \times \text{Magnitude} \]

Therefore, frequent, local-scale events can lead to the same risk level as an extremely large but rare event. The figure below exemplifies that the risk of an Ocean-scale tsunami such as the one caused by the gigantic Storegga slide off Norway (Kvalstad et al., 2005) can be similar to large but local tsunamis caused by submarine landslides or rockfalls in the fjords that propagate only in the surroundings. In the figure, inspired by Casalbore et al., (2011) several landslide-generated tsunami events covered in this document are compared in terms of magnitude and frequency, and the hazard level depends on the magnitude of the event and the recurrence time (or probability of occurrence).

High-probability, low-impact, local, extensive risk events are much more frequent than low-probability, high impact, intensive risk events. However, they attract much less attention and media coverage, despite the fact that in the last 50 years in Europe, local events alone have caused collapses in harbours and airports (Gioia Tauro 1977, Nice 1979), wide-spread cable breaks (Algeria 2003), local but often deadly tsunamis caused by submarine landslides or rockfalls in the fjords (Nice 1979, Finneidfjord 1996, Stromboli 2002), and volcanic crises (Eyjafjallajökull, Iceland 2010, El Hierro 2011-2012, La Palma 2021). These events cause significant costs for response and recovery. Therefore, risk reducing incentives and initiatives should focus both on high probability, low consequence events, balanced with low probability, high consequence events.

The relevance of this extensive risk, i.e. risk due to events that are frequent even if not high-impact, should not be underestimated. For instance, small submarine landslides or fluids escaping from the sediment can break underwater cables or damage pipelines, oil rigs or harbours, representing a significant threat to the Blue Economy, considering the large amount of infrastructure that is already installed on the seafloor. From an economic and environmental point of view, such events should be considered when planning coastal settlements, seafloor activities and infrastructure.
Risk mitigation is the reduction of risk exposure and/or the adverse effects of risk. Mitigation is therefore the denominator of the risk equation:

\[R = \frac{H \times E \times V}{M} \]

For most risk related to geological processes, prevention or lowering of the hazard is unlikely as it is impossible to avoid natural phenomena. Risk mitigation should therefore focus on the reduction of exposure and vulnerability to hazard phenomena through the assessment of: 1) the likelihood of a geohazard event occurring, 2) the definition of its location, size and character, and 3) the primary and secondary effects it will cause (e.g. earthquake \(\rightarrow\) tsunami). Such a geohazard assessment would lead to informed decisions regarding the location of settlements and key infrastructure, it would also facilitate the use of early-warning systems to alert authorities and the population of an incoming event, and it would promote procedures and engineering prevention measures that would reduce damage. In addition, the concept of risk tolerance should be considered when investigating possible trade-offs in decision-making related to risk assessment. Risk tolerance is the willingness of an institution(s) or communities to take a risk(s). Well defined risk tolerance criteria brings rigour across the (geo)hazard risk assessment and management when deciding, officially, what is tolerable, intolerable or can be accepted. It is often seen as a requirement to ensure robust implementation of appropriate risk reduction/resilience measures.

Consequently, scientific knowledge of magnitude, spatial and temporal scales of marine geohazards is a prerequisite for the assessment and mitigation of the risk to communities, critical infrastructure and the environment (Ercilla et al., 2021). Recent analysis of disaster loss databases from the Centre for Research on the Epidemiology of Disasters (CRED) and the United Nations data between 1998 and 2017 showed that the majority of human fatalities resulting from natural hazards were due to high-impact, sudden-onset, geological events, including earthquakes, tsunamis and mass movements (CRED & UNISDR, 2018). Geological events accounted for only 9% of total disasters in the past 20 years, but for 59% of all disaster-related deaths, making them by far the deadliest type of disaster (Mizutori & Guha-Sapi, 2020).

During the last two decades, marine geohazards have drawn more attention, as there is a substantial increase in the awareness of dangers associated with large-scale disasters. Single extreme events like the 2004 Indian Ocean earthquake and tsunami, or the 2011 Tohoku-Oki earthquake and tsunami in Japan caused a large number of casualties and heavy economic losses. The global reverberations of the related disaster impact document the tight socio-economic interconnections of societies across political boundaries and continents. Cascading or cumulative events, such as the 2011 Tohoku-Oki earthquake and tsunami affecting the Fukushima-Daiichi power plant in Japan may strongly amplify damage, resulting in significant direct and indirect economic losses. Similar large catastrophic high-impact events have occurred in Europe in the past, such as the 1755 Lisbon earthquake and tsunami and the 1908 Messina earthquake and tsunami event. However most Europeans do not perceive that there is a threat of comparable destructive events occurring again, and hence there is little awareness that a future hazard will impact our European coasts.

Insight into the mechanisms and characteristics that underlie hazardous events is critical to fully understand their hazard potential and related disaster risk (Ercilla et al., 2021) and to design a safe operating space for human activities and infrastructure. It requires understanding the triggers, how these geological hazards progress in time and space, and what their impacts are on the shoreline (including possible cascading effects) (Urlaub et al., 2018). These events represent fundamental geological processes, which cannot be controlled or re-directed and are thus independent of anthropogenic factors. Consequently, accurate disaster risk assessment and mapping for individual processes and regions is critically important for risk governance and mitigation at the national and local levels. Regulatory agencies need this information for contingency planning and geohazard management, as well as capacity assessment, business continuity and development of offshore infrastructure and resources. Disaster risk information is critical for risk reduction strategies and policies to minimize the potential damage that could be created in the case of a natural or a human-induced geohazard.

This Position Paper discusses the type (Chapter 2), distribution (Chapter 3) and impact (Chapter 4) of marine geohazards on the European Blue Economy and coastal regions, as well as what and how novel scientific approaches may broaden our understanding of their trigger mechanisms and drive a risk-mitigating European policy (Chapter 5). In addition to natural hazards, the impact of human activities on marine geohazards and of changing Ocean conditions due to climate change are evaluated.
This Position Paper and its recommendations support the UN Decade of Ocean Science for Sustainable Development (Ocean Decade) in a number of ways.

The Position Paper highlights knowledge to support Societal Outcome 4 (A predicted Ocean where society understands and can respond to changing ocean conditions) by providing recommendations on how to better model the potential impact of marine geohazards that could be quantified using hazard maps or risk models to set up early warning and rapid response systems. It also provides input to Outcome 5 (A safe Ocean where life and livelihoods are protected from ocean-related hazards) by providing recommendations that aim to increase the science needed to understand processes, triggers and precursors of marine geohazards and avoid disasters and losses at the Blue Economy sectors. The Position Paper also provides recommendations to Societal Outcome 7 (An inspiring and engaging Ocean where society understands and values the Ocean in relation to human wellbeing and sustainable development) on how to increase awareness of marine geohazards among public authorities, in order to prevent heavy impacts on coastal societies.

Regarding the Ocean Decade Challenges, this document addresses Challenge 4 (Generate knowledge, support innovation, and develop solutions for equitable and sustainable development of the ocean economy under changing environmental, social and climate conditions) by discussing how to enhance scientific research on marine geohazards at all levels and create partnerships with industry to increase our knowledge of the Ocean. This document also addresses Challenge 6 (Enhance multi-hazard early warning services for all geophysical, ecological, biological, weather, climate and anthropogenic related ocean and coastal hazards, and mainstream community preparedness and resilience) by presenting how to increase awareness of marine geohazards among public authorities, and to frame marine geohazards in administrative management rules. Finally, to address Challenge 7 (Ensure a sustainable Ocean observing system across all Ocean basins that delivers accessible, timely, and actionable data and information to all users), this document makes recommendations to promote a census of geohazard features in European seas, to integrate deep sea monitoring infrastructures with seafloor mapping and geohazard research, and take advantage from data mining, virtual access and artificial intelligence.
What is a marine geohazard?
Marine geohazards are generated from diverse geological conditions, ranging from broad-scale to local scale. At any time, they may develop into a situation that poses a direct threat and disaster risk to coastal communities and the Blue Economy. While the preconditions usually form over geological times, the onset of the hazard can be very sudden and infrequent, and hence difficult to predict – they virtually come ‘out of the blue’. The focus of this document is on geohazards that originate from submarine or deep geological regions relevant for European coastal regions, sea basins and outermost regions. It excludes littoral hazards with slow onset-times such as coastal erosion, seawater intrusion, or coastal subsidence; and hazards associated by atmospheric disturbances such as storm surges and meteo-tsunamis.

2.1 Earthquakes

An earthquake manifests in the sudden movement of the Earth’s surface, resulting from an abrupt release of energy by the rupture of faults in the crust and upper mantle of the Earth. This is among the most damaging of geohazards, frequently causing devastating loss of lives, assets and infrastructure, especially in densely populated areas. Since 1998, earthquakes have caused a higher number of deaths than all other geophysical (e.g. mass movement, volcanic activity) and hydro-meteorological hazards (e.g. floods, storms, extreme temperatures) combined (CRED & UNISDR, 2018).

Earthquakes with epicentres at sea are usually difficult to locate precisely because of the inadequate or distant location of seismic networks, which are mainly located onshore. However, if the subsurface rupture reaches the seafloor, as is the case for faults causing large earthquakes, the seafloor sediment offers a unique opportunity to depict and quantify fault direction, dimension and movement through time. These are the parameters needed for seismic hazard assessment and for the design of anti-seismic infrastructures. Recent technological advances, such as monitoring the seafloor deformation prior to earthquakes, offer the opportunity to measure the current stress build-up along a fault prior to rupture induced by an earthquake (Lange et al., 2019).

The magnitude of an earthquake is the amount of energy released, and although the Richter scale \((M_r) \) is most well-known, it is not commonly used anymore, as the Moment Magnitude \((M_w) \) is more accurate, especially for larger events. The Moment Magnitude \((M_w) \) is an exponential scale, without a theoretical upper limit (in practice, an earthquake larger that \(M_w \) 10 cannot happen as no fault long enough to generate such a magnitude is known to exist, and if it did, it would extend around most of the planet). The greatest submarine earthquakes \((M_w > 8) \) occur along destructive tectonic plate boundaries, referred to as subduction zones (e.g. Sallarès & Ranero, 2019) where one tectonic plate is thrust underneath another. Recent examples are the Sumatra-Andaman (Indonesia, 2004) and Tohoku-Oki (Japan, 2011) earthquakes (both \(M_w > 9 \)), which both ruptured undersea faults and triggered destructive tsunamis. Indirect earthquake effects also include submarine mass movements that may cause extensive cable breaks (see Section 2.8 on Cascading and/or cumulative events). In Europe, the largest and most destructive subduction zone earthquake with \(M_w > 8 \) occurred in 365 AD offshore of Crete Island (Shaw et al., 2008). It led offshore of Crete to an instantaneous uplift of Western Crete by more than 6 m and triggered a catastrophic tsunami that impacted nearly all coastal areas around the East Mediterranean Sea.

2.2 Volcanoes

Volcanoes may form at, or near, the margins of tectonic plates where magma reaches the surface, or over hot spots, i.e. over deep magma sources located in the lower Earth mantle. In the Ocean, volcanoes may be completely submerged, or grow large enough to form islands or coastal volcanoes, many of which have been inhabited since prehistory to benefit from the fertile soils.

Santorini Island in the Aegean Sea (Figure 2.1.), is a good example of a large, inhabited caldera volcano. It has a population of >15,000 people, and 500,000 visitors during the summer months. The island took its present shape in the Bronze Age when a super-eruption created the caldera and caused a tsunami that contributed to the end of the Minoan civilization (3000-1100 BCE).
Volcanic eruptions imply expulsion of lava which is at about 1,000°C. The eruptive style (explosive, such as 1980 eruption of Mount St. Helens, vs. effusive, such as the regular rivers of lava in Hawaii) is due to the sudden decompression of gases dissolved in the magma, and sometimes due to the violent interaction with water (phreatomagmatic eruptions). The explosivity is therefore primarily controlled by the depth of the water, as water pressure can suppress the rate of gas expansion. Phreatomagmatic eruptions occur when the vent is in shallow water. The huge amount of volcaniclastic sediment often causes the emergence of new land, such as occurred at Ferdinandea Island in the Sicily Channel in the early 19th century, Capelinhos in the Azores Islands in the late 1950s, and Surtsey in Iceland in the late 1960s. Typically, eruptions deeper than 300 m will rarely break the water surface, but their products can still pose hazards. Massive emission of fluids from the seafloor may dramatically decrease water density and thus buoyancy causing the sinking of vessels, as probably occurred in 1944 in the Caribbean Sea with 67 casualties, and in the sinking of the Japanese research vessel in 1932, causing 31 casualties (Nakano et al., 1954).

Both during and outside of periods of activity, the over-steepened flanks of volcanic edifices can be prone to large landslides or collapses that can trigger tsunamis, such as the 2018 flank collapse of Anak Krakatoa, Indonesia (Figure 2.2), while seafloor activity can damage cables, affecting communications (Favali et al., 2006).

1 https://uwseismic.com/volcanoes/kick-em-jenny/kej-hazards/
WHAT IS A MARINE GEOHAZARD?

While many volcanic islands are densely inhabited and/or tourist destinations (e.g. Mediterranean islands, Canary and Azores Islands, Mayotte, Caribbean and Polynesia), the locations of submarine vents remain largely unknown and completely unmonitored. Volcanic activity poses obvious threats to life and property, but other economic impacts should not be discounted either. Both nearshore and deep ocean volcanic eruptions can generate large rafts of floating volcanic rock (lava balloons or pumice), as occurred in El Hierro in 2011 and in Pantelleria in 1891. These may remain buoyant for any time between days to years, and can be dispersed by Ocean currents and winds. These pumice rafts can be transboundary volcanic hazards that are able to damage vessels and inundate harbours and fisheries. Volcanoes may also produce vast ash plumes that can ground planes, as was the case in the 2010 Eyjafjallajökull volcano, which is estimated to have cost the aviation industry US$250 million per day (Gudmundsson et al., 2010).

2.3 Tsunamis

A tsunami is a succession of waves of extremely long wavelength generated by a powerful, underwater disturbance that causes a sudden displacement of a large volume of water from the sea floor. Unlike wind waves that only move the surface of the ocean, tsunami waves move the whole column of water from sea floor to the surface. Tsunamis may be triggered by earthquakes, volcanic eruptions, submarine landslides, and by onshore landslides in which large volumes of debris fall into the water (USGS, 2006). Very low-probability meteorite impacts could potentially also generate a tsunami. The waves travel away from the area of origin and can be extremely damaging when they reach the shore.

If a tsunami-causing disturbance (i.e. earthquake or volcano) occurs close to the coastline, the resulting tsunami can reach coastal communities within minutes. The height of a tsunami wave in the deep Ocean is typically a few decimetres, and the distance between wave crests can be up to 100 km. The speed at which the tsunami travels decreases as water depth decreases. In open water, where the water depth reaches 4-5 kilometres, tsunami speeds can be more than 700 kilometres per hour. As tsunamis reach shallow water around islands or on a continental shelf, the speed decreases but the height of the waves increases manifold. Depending on the seafloor morphology, wave heights may reach more than 20 m. The great distance between wave crests prevents tsunamis from dissipating energy as breaking surf; instead, tsunamis cause water levels to rise rapidly along coastlines much like very strong and fast-moving tides (i.e. strong surges and rapid changes in sea level). Much of the damage inflicted by tsunamis is caused by strong currents and floating debris. Tsunamis travel much further inland than normal storm waves2.

One of the most well-known examples is the 2004 Indian Ocean tsunami triggered by the Sumatra-Andaman earthquake, which killed 283,000 people in coastal areas in 13 countries around the Indian Ocean. A few years later, in 2011, a catastrophic tsunami produced by the Tohoku-Oki earthquake (Lay et al., 2005), hit the north-eastern coast of Japan causing more than 18,000 deaths and extensive damage to houses and industrial facilities, including the Fukushima Daiichi nuclear power plant (Goto et al., 2015). This event and its consequences are further discussed in Section 2.8 (Cascading and/or cumulative events).

Landslide-generated tsunamis also threaten European coasts. They can range in size from the gigantic Storegga tsunami (see Section 2.4), to local tsunamis such as in Stromboli in 2002 (Chiocci et al., 2008) where a submarine landslide caused waves up to 10 m high (Figure 2.3.). Stromboli, located in the Eolian archipelago, is a crowded tourist destination during the summer season. In 1977 in Gioia Tauro (Italy) and in 1979 in Nice (France) small submarine landslides, caused by engineering work for harbour or port construction at the heads of submarine canyons, caused tsunamis that destroyed the infrastructure and in the case of Nice, caused several casualties. See Section 2.7 Human induced and technological Hazards for more details.

2.4 Submarine mass movements

Submarine slopes are generally prone to fail with destructive consequences. Their intrinsic instability is due to the fact that the seafloor is usually made up of unconsolidated soft-sediment which is saturated by water, and often develops overpressure between grains. Furthermore, the typical lithological, morphological and stratigraphic homogeneity of the seafloor over large areas means that failure can create large mass movements, which easily propagate over extremely broad regions. Seafloor surveys have shown that such mass movements can involve several thousand cubic kilometres of material, i.e. be several orders of magnitude larger than any mass movement on land (Urgeles & Camerlenghi, 2013). Landslides also have a major impact on the global sediment flux from land to sea (Korup, 2012). One of the largest and best studied events is the Storegga slide (Figure 2.4.), which occurred in offshore Norway some 8,200 years ago, affecting an area the size of Hungary and mobilizing 3,000 km3 of sediment (Bondevik et al., 2005). For comparison, the largest known subaerial landslide (Mount St. Helens, 1980) involved less than 3 km3 of sediment.

There are numerous causes of submarine mass movements including erosion, rapid sediment deposition, groundwater activity in coastal aquifers, deep fluids (e.g. from mineral dehydration and serpentinization), earthquake loading; seafloor loading by cyclones, storm waves or tidal pumping, volcanic eruptions, rapid sea level

1 https://doi.org/10.12770/bb6a87dd-e579-4036-abe1-e649eea9881a
WHAT IS A MARINE GEOHAZARD?

In coastal waters, submarine landslides occur commonly on soft, unconsolidated sediments, in areas where deltaic, glacial or volcaniclastic deposits have rapidly accumulated, or at the head of submarine canyons. Despite their usually small size, shallow water landslides are extremely dangerous when they occur in areas with dense infrastructure (i.e. industrial and public facilities, cables, pipelines, rigs). They have the greatest potential to cause tsunamis and their retrogressive evolution may affect the coastline, as occurred in Finneid fjord, Nice, or Stromboli (Longva et al., 2003; Dan et al., 2007; Chiocci et al., 2008). They therefore represent a very high ‘extensive’ risk (see Box 1). In most cases, coupled factors and processes give rise to unpredictable failure events, such as the combined lateral tectonic faulting and coastal landslides following the Mw 7.6 Izmit earthquake in 1999 (Altunok et al., 2001), the Mw 6.8 Boumerdès earthquake in 2003, which struck the coast of Algeria (Meghraoui et al., 2004), the Mw 7.8 Amorgos earthquake in 1956 in the South Aegean Sea (Okal et al., 2009) and the Mw 7.0 Haiti earthquake in 2010 (Hornbach et al., 2010).

In deep-water, landslides may affect astonishingly large areas and the role of marine gas hydrates in slope stability is still a matter of scientific debate. Gas hydrates are ice-like crystals of water and gas molecules that solidify at low temperature and under high pressure. They are commonly found on continental margins (i.e. deeper than several hundreds of metres). When gas hydrates dissociate (if temperature rises, pressure decreases or salinity increases) they can destabilize the submarine slope. In the Black Sea for instance, salinity changes caused by the reconnection of the Black Sea with the Mediterranean Sea ~9000 years ago could have caused extensive gas hydrate dissociation, and hence submarine landslides (Riboulot et al., 2018). The role and process of global warming in hydrate dissociation is also a question of scientific debate (Kvenvolden, 1988; Kretschmer et al., 2015).

2.5 Fluid activity and its manifestations

Fluid flow through marine sediment is a common process that occurs when the water from the underlying sediment is expelled, as the sediments are buried, or due to diagenetic processes, hydrothermal activity, or the migration of deep-seated fluid from the bedrock and Earth’s crust. Generally, fluid accumulates under the sediment when there are rapid sedimentation events. Initial porosity, i.e. fluid content between grains, may be as high as 80% in clay, and with stress from overlying sediment, the pore fluid is expelled. Organic matter decay, mineral transformation and diagenesis will add significant amounts of secondary fluids, both water and gases.

If the fluid can escape along faults and fractures, or through the pores of the sediment, it seeps into the Ocean (see Figure 2.5.) where it may fuel unique seafloor ecosystems. If the flow to the seafloor is hampered by barely permeable sediment, the fluids are trapped and significant overpressure builds up. If that pressure exceeds the strength of the sediment, the seafloor stability may be weakened, causing failure and submarine landslides.

The role of fluid migration and overpressure build-up were in fact hypothesized as driving or concurring factors for many submarine landslides, such as the ‘small’ 1979 Nice landslide (groundwater seepage) to the ‘very large’ Storegga slide (methane hydrate dissociation). In addition, continuous circulation of fresh water may alter clay-rich sediment by leaching chemical compounds. This may reduce the cohesion of the deposits and favour instability and liquefaction as occurs in many Norwegian fjords.

In regions with significant fluid seepage, craters known as pockmarks (Figure 2.6.) are created by gravitational collapse of a seafloor that used to overlie the fluid reservoir. These pockmarks can range from several metres to hundreds of metres in diameter, and from decimetres to few tens of metres in depth (Hovland et al., 2002).

Similarly, fast release of over-pressured material may generate mud volcanoes. In contrast to pockmarks, mud volcanoes are complex systems that manifest as cone- or shield-shaped mounds, emerging from the seafloor (Figure 2.6.). They may reach up to several kilometres in diameter and up to a few hundred metres in height (Kopf, 2002). Mud volcanoes are considered the most effective means of solid and fluid release from deeper sediments to the surface, with the most violent, rapid examples termed diatremes (Brown, 1990). In shallow water, gas eruption from mud volcanoes may threaten navigation (Casalbore et al., 2020).

Regardless of the size, the genesis and positioning, fluid release from the seafloor may represent a geohazard, either directly to seafloor infrastructure or drilling operations, or indirectly due to a loss in density and hence buoyancy that may jeopardize vessels, rigs and floating infrastructure above.
Figure 2.5. Geophysically detected gas plumes (flares) in the Black Sea. Note that these gas flares are comparable to the height of the Eiffel Tower in Paris, France. In the right part of the seismic profile a low-permeability Gas Hydrate Stability Zone (GHSZ) occurs while to the left a GHSZ does not exist and gas is able to migrate into the water column.

Figure 2.6. Top left: Multibeam bathymetric images of pockmarks South of Finland. Inset below shows a depth profile over pockmark B.

Top right: Location and bathymetric map of the mud volcano Captain Arutyunov in the Gulf of Cadiz.

Bottom: Seafloor morphology and flare in the water column above (A) indicating active venting in the Vestnesa Ridge (Svalbard continental margin) and a descriptive mechanism of seepage (B).
2.6 Migrating bedforms

In areas with a strong tidal regime and loose sediment, bottom currents produce sand waves, i.e. migrating bedforms similar in shape and dimensions to desert dunes. They can also occur in straits and seaways where currents are forced to accelerate. In submarine canyons and channels, sediment flows produced by gravity generate bedforms called cyclic steps and antidunes, that migrate upstream causing erosion to the canyon heads. Migrating bedforms may harm critical seafloor infrastructure, such as submarine cables and pipelines (e.g. Barrie et al., 2005; Cecchini et al., 2011) (Figure 2.7).

Seaways connecting islands to coasts or running parallel to the shore usually host a large number of cables and pipelines that may be threatened by the migrating bedform fields. This is common in the Mediterranean Sea (Bosphorus-, Messina-, Bonifacio- and Gibraltar Straits) and in the Atlantic Ocean (English Channel, Danish Strait). Submarine canyons with cyclic steps are present on almost all European continental slopes and such features represent a geohazard for the submarine cables that have to pass through them.

2.7 Human induced and technological hazards

In densely populated European coastal areas, human activities such as construction of large coastal infrastructures, water pumping and creation of dams can lead to subsidence, landslides and erosion along the coasts and offshore. The ill-judged effect of natural phenomena and hazards in combination with an inauspicious location is responsible for most of the damage produced to seafloor infrastructures and coastal settlements. However, there are instances where human activity directly enhanced the marine geohazard, causing events that would not have occurred naturally.

Underwater canyons are characterized by natural coastward migration of their head, occurring when the erosion reduces the slope and the weight of the rock mass overcomes the resistance of the rock mass itself. If the seafloor immediately above the canyon head is loaded with engineering structures, the collapse of the structure will be more likely to occur. Examples include the tsunami-forming landslides that occurred in 1977 at the Gioia Tauro port in Italy (Colantoni et al., 1992) and in 1979 at the Nice harbour in France (Ioualalen et al., 2010). Other human activities that may trigger natural marine geohazards are fracking, i.e the injection of

Figure 2.7. Side scan sonar image of the seafloor north of the Messina Strait. A free span of a liquefied natural gas (LNG) pipeline can be seen between sand wave crests in the upper left. To the right, the pipeline is buried in the sand. The damage to such seafloor infrastructures may cause an economic loss and create a risk for maritime traffic (loss of buoyancy) and environment.
fluids into sub-seafloors to recover hydrocarbons or storage gas (Vilarrasa et al., 2021) and possibly CO₂ sequestration (see Figure 2.8.). Another trigger for marine geohazards is the large outbursts caused by drilling operations, such as the blowout that caused an explosion on the rig ‘Deepwater Horizon’ in 2010 in the Gulf of Mexico (USA), producing one of the largest ecological disasters to date⁴.

2.8 Cascading and/or cumulative events

Cascades and cumulative events are multi-hazard chains where one hazard event triggers a process that leads to other phenomena, resulting in additional and often greater impacts and consequences (e.g. additive or multiplying impacts) that significantly increase fatalities and damage. Cascading hazards can be natural (for example, earthquake-tsunami-fire) or exacerbated by human-made hazards (see Box 2). For a cumulative hazard, the impact multiplies and thus significantly magnifies (Daniell et al., 2017; Cutter, 2018).

The flooding and subsequent meltdown of the Fukushima Daiichi nuclear power plant in northern Japan is a good example of a cumulative event (Figure 2.9.). The power plant was hit by a 14-15 m high tsunami generated by an earthquake, which swept over the plant’s seawall and flooded the lower grounds of the reactor buildings with seawater, causing a failure of the emergency generators (Hasegawa et al., 2016). The cascade of events resulted in nuclear meltdown, hydrogen explosions and radioactive contamination, including the release of contaminated water into the Pacific Ocean (Lipschey et al., 2013).

Cumulative effects occur under a wide set of different phenomena, where the occurrence of the initial triggering event entails a number of (often interacting) secondary events (see Box 2). An earthquake for instance may cause structural collapse of buildings due to ground motion, but may also interrupt supply routes (freeways, harbours), generate a tsunami, provoke subaerial and submarine landslides (some tsunami forming or tsunamigenic), cause land subsidence that favours coastal inundation, produce dispersion of pollutants (including e.g. nuclear waste in 2011), or damage emergency infrastructures. This is evident for low-probability high-impact events, as many of the most devastating examples recently have all crossed the sea-land boundary, with destructive effects demonstrating their potential to cause humanitarian crises.

Cascading effects commonly occur in coastal towns when buildings suffering from structural damage inflicted by earthquake-shaking are subsequently exposed to a tsunami, as happened in Messina in 1908 and in Lisbon in 1755. In Lisbon, the cascade effect also included an extensive fire.

⁴ https://www.epa.gov/enforcement/deepwater-horizon-bp-gulf-mexico-oil-spill
WHAT IS A MARINE GEOHAZARD?

Credit: Mori et al. (2011)

Figure 2.9. **Left:** The Fukushima Daiichi Nuclear Power Plant was flooded by 14–15 m tsunami waves generated by a Mw 9.0 earthquake in 2011. As a consequence, three of the 11 reactors lost the ability to maintain proper reactor cooling causing a release of radioactive material and the evacuation of ca. 100,000 people. It took weeks to stabilize the reactors.

Right: The run-up of the 2011 tsunami after the earthquake along the Japanese coast, compared to two previous events in 1886 and 1933.

BOX 2: A TIME BOMB OUT-OF-THE-BLUE

The risk level of high-probability low-impact events may increase by an order of magnitude if cascading events are taken into consideration. For instance, if seismically active regions with high mountain ranges close to the coast (e.g. Alboran Sea, Ligurian Sea, Calabria region, Eastern Sicily, Aegean Sea) experience large earthquakes, a collapse of transport infrastructure can be expected either due to ground shaking, landslides or tsunamis. In such a scenario, population rescue, evacuation and emergency response will mainly rely on immediate airborne intervention, followed by ship-transported aid reaching the area through entry-points, usually ports and harbours. If these infrastructures are damaged by even small submarine landslides or seafloor failures (triggered by the earthquake), even a relatively minor initial geohazard would have catastrophic consequences.

A good example is the Gioia Tauro port in southern Calabria, one of the most seismically active regions of the Mediterranean Sea. The Gioia Tauro port is one of the main hubs for container ships in the Mediterranean Sea and potentially the main entry point for large ships that would need to convey aid to the Calabria region in case of a natural disaster. The port is located at the head of the Gioia Tauro canyon, which is located very near to the shore, and in very shallow water (see Figure 2.10). During its construction in 1977, its external pier collapsed and was partially destroyed because of a submarine landslide and the waves this caused (Colantoni et al., 1992). The port is still at risk to collapse because erosive evolution at the canyon head is still ongoing. Therefore, if a large earthquake were to strike here, ground shaking could trigger a submarine landslide, which could directly or indirectly (e.g. with tsunami waves as in 1977) affect the port and prevent its use as an entry point for large rescue vessels and facilities.

Figure 2.10. Multibeam bathymetry offshore Gioia Tauro port. Gioia Tauro is one of the main container ports of the Mediterranean and a possible entry point for emergency rescue vessels in case of a natural disaster in Calabria.
A classic cascading event for marine geohazards is the earthquake that generates a submarine landslide, which in turn causes a tsunami and turbidity currents (gravity flows) with cable breaks occurring hours or days after the initial event (Figure 2.11).

There is increasing evidence that many tsunamis associated with earthquakes were not caused by the earthquake itself but rather were triggered by landslides caused by the earthquake (Tappin, 2017). Such phenomena may explain discrepancies between modelled arrival times and run-up of waves compared to measurements from the 2011 Tohoku and 1908 Messina cases (Satake et al., 2007; Pino et al., 2009; Suzuki et al., 2012).

The cascading hazard risk rises exponentially with the increasing use of the seafloor for engineering infrastructure (cables, pipelines, energy plants, aquaculture farms and others). For instance, 10 hours after the Messina earthquake in 1908, a cable connecting Malta to Greece was broken 190 km south of the epicentre by a turbidity current (Ryan & Heezen, 1965). In Newfoundland (Canada), cable breaks caused by an earthquake-generated landslide in 1928 was the first in situ evidence that sparked the evaluation of gravity flow dynamics at sea (Heezen & Ewing, 1952). Finally, in 2003, a M_w 6.8 earthquake triggered a large turbidity current that caused 29 submarine cable breaks along a 150 km long span of the Algerian margin (Cattaneo et al., 2012) (Figure 2.12.).
In order to decrease their risk to society, we must embrace a multi-hazard risk assessment approach instead of treating marine geohazards independently, with separate monitoring and assessment of the effects on infrastructure affected by each individual hazard. This can be achieved by multi-hazard, scenario-based assessments and subsequent planning. The transition from a single to a cascading hazard significantly increases the complexity of the process, requiring a shift from a ‘hazard-centred’ perspective to a ‘territorial-centred’ perspective (Gasparini & Garcia-Aristizabal, 2014), and requires us to take into account the specific conditions the geographical region (Ercilla et al., 2021).
Where do marine geohazards occur in European Seas?
3.1 Plate tectonics in Europe

Plate tectonics is the overarching process leading to geohazard formation and distribution. The Earth’s outermost shell, the lithosphere, is divided into tectonic plates that move continuously on geological timescales. The boundaries of the plates (Figure 3.1.), may be constructive (also called divergent, where tectonic plates move away from each other), destructive (or convergent, where tectonic plates converge, with one driven beneath the other in a process called subduction), or conservative (along transform boundaries, where tectonic plates move past each other). The Eurasian plate, which contains Europe, experiences a variety of different conditions at its margins, many of which are associated with marine geohazards (Figure 3.2.), but also give rise to the diversity of landscapes on- and offshore.

Figure 3.1. Sketches of the tectonic plates on Earth and of the three types of plate boundaries, i.e. A. constructive (divergent), B. destructive (convergent) and C. conservative (transcurrent).
Constructive plate boundaries are found on both the western (Mid-Atlantic Ridge) and northern (Gakkel Ridge in the Arctic Ocean) edges of the Eurasian plate, while the southern boundary is a much more complicated mixture of conservative and destructive plate boundaries. Both constructive and destructive plate boundaries are associated with high volcanic and earthquake activity. The destructive boundary with the African plate has caused repeated large earthquakes in the Mediterranean Sea, which have been reported in ancient Egyptian sources, Greek and Roman myths, and the Hebrew Bible (Guidoboni et al., 1994). In some areas, the intersection of the constructive plate margin with a region where the higher mantle is melting (e.g. the Azores Islands and Iceland) may produce larger volcanoes than those typically expected for a constructive margin. Any of these processes may result in slopes or landforms that are unstable and prone to landslides.

This chapter provides an overview of the distribution of marine geohazards in European seas. We acknowledge that all nine outermost regions of the European Union are not equally described in this section. Even though the events highlighted in this chapter have occurred in the past there is currently no way to predict using the available technology when similar events will occur in the future.

1 French Guiana, Guadeloupe, Martinique, Mayotte, Reunion Island and Saint-Martin (France), Azores and Madeira (Portugal), and the Canary Islands (Spain)
3.2 Atlantic Ocean

The Mid-Atlantic ridge is a constructive plate boundary, where the Eurasian and North American plates move away from each other and new seafloor grows (Figure 3.3.). Here volcanic eruptions and volcanoes are formed as the result of decompression melting and brittle stretching between the plates. These volcanoes and associated earthquakes tend to be relatively small and pose little hazard to people, although lava flows and fracturing could potentially damage trans-Atlantic deep-sea cables. Exceptions exist where volcanoes are associated with anomalously high levels of mantle melting (called ‘hot spots’), for example Iceland and the Azores Islands. Hot spots may also produce volcanoes away from plate margins, as with the Canary Islands. Increased eruption frequency and regular eruptions in the same place can build large volcanoes, which may break the sea surface to form islands. These eruptions tend to be more explosive than those in deep water. This can also happen on volcanoes topped by lakes or ice, as was the case of the Eyjafjallajökull eruption in Iceland in 2010, which halted air traffic over northern and central Europe and caused significant economic losses.

The most recent submarine eruption in Europe occurred in 2011-2012 offshore of El Hierro in the Canary Islands. This eruption lasted five months and produced floating debris, also called lava balloons i.e. crust of solidified lava surrounding a large cavity, floating on the sea surface after rising from a submarine volcanic eruption (Figure 3.4.). This floating debris disrupted the local fishery and caused alarm in the population (Gómez-Letona et al., 2018). This phenomenon had already been observed in 1892 after the eruption of Pantelleria in the Sicily Channel as recorded in books from the period (Ricco, 1892).

Many island-forming (or insular) volcanoes grow in height because of eruptive activity. Their flanks become steep-sided and unstable (see Figure 2.2.). Sector collapses of volcanoes create large landslides that can produce tsunamis, which can travel for thousands of kilometres across the Ocean. The volcanic islands in the Atlantic are home to millions of people and are some of the continent’s most popular holiday destinations for European and global tourists.
Non-volcanic hazards in the Atlantic include the potential for large earthquakes along the boundary between the Eurasia and African plates, which historically have had the potential to cause tsunamis. The plate boundary runs through the Gulf of Cadiz. The offshore boundary of the Gulf of Cadiz is seismically active, with several faults which are possibly able to generate great magnitude earthquakes (see Box 3) such as the 1755 Lisbon earthquake and tsunami (Mw 8.5-9) (Gràcia et al., 2003; Gutscher et al., 2006; Zitellini et al., 2020), and the 1969 Horseshoe earthquake (Mw 7.8-8) (Fukao, 1973).

Seafloor surface ruptures and submarine landslides provide further evidence of the tectonic activity in the Gulf of Cadiz and the overall compressive regime generates widespread mud volcanism and fluid venting (Pinheiro et al., 2003) with over forty active mud volcanoes at water depths between 200 m and 4000 m.

BOX 3: WHAT WOULD HAPPEN IF THE 1755 EARTHQUAKE WOULD OCCUR TODAY?

Using the Lisbon tsunami of 1755 as a reference, it is possible to make an approximate calculation of the consequences of an equivalent tsunami occurring today. In 1755, the total number of victims would have reached 45,000 in the different countries facing the Gulf of Cadiz (Figure 3.5.) but also in Brazil and North America, although accurate records do not exist. In Spain, the recorded amount of fatalities along the coast was 1,214 people, out of a total population of 9 – 10 million inhabitants. Given that the population has grown 5 times (20 times in coastal areas), if a similar event occurred today, the number of deaths would be between 5,000 and 24,000 people, and 60,000 people if seasonal tourists are considered. These numbers represent the estimated deaths of Spain alone, and exclude the fatalities in Portugal (records estimate 10,000 victims in Lisbon only in 1755) and other countries that would be affected by the tsunami.

The damage due to the event in Spain was approximately 70 million Reals in 1755, estimated today as an equivalent to €700 million. However, since 1755, the infrastructure in and around the coastal populations and beyond has increased exponentially, therefore the financial cost would be exponentially higher.
WHERE DO MARINE GEOHAZARDS OCCUR IN EUROPEAN SEAS?

3.3 The Mediterranean Sea

The Mediterranean Sea, located at the African-Eurasian plate boundary, is subject to strong earthquakes because of its active geology (mainly in Algeria, Italy, Greece and Turkey), while two of the five largest volcanic eruptions ever recorded on Earth (Campi Flegrei 40,000 and Santorini 1600 BCE) occurred in the Tyrrhenian and Aegean Sea. The Mediterranean seafloor is characterised by countless mass movement processes, including submarine landslides, debris avalanches and large turbidity flows. Steep continental slopes fed by mountain-supplied rivers are prone to seabed instability and, because of high sedimentation rates and the retrogressive evolution of the canyon heads that often reach the coast, small landslides are ubiquitous (de Lange et al., 2011).

3.3.1 The Western Mediterranean

The Western Mediterranean (Figure 3.6.) stretches from the Straits of Gibraltar to the Italian Peninsula and is defined by a string of semi-enclosed sub-basins, including the Alboran, the Algerian, the Liguro-Provençal and the Tyrrhenian Basin and the Sicily Channel, connecting to the Eastern Mediterranean. Between these basins, there are a series of large and small islands, such as Corsica and Sardinia, Sicily, the Balearic Islands, and the Tyrrhenian archipelagos. The Western Mediterranean is seismically active and dominated by an elaborate pattern of tectonic fault systems and shear zones. Repeated large- to moderate-size earthquakes pose a severe hazard to the region and seismic activity is commonly associated with tsunami generation.

The Alboran Sea forms the westernmost part of the Mediterranean between the Iberian Peninsula and the African coast and connects to the Atlantic through the Straits of Gibraltar. The region has witnessed a series of seismic events up to M_w 7.1 that have caused thousands of casualties and have made hundreds of thousands of people homeless. Off Morocco, earthquakes occurred in 1994 (M_w 6.2), 2004 (M_w 6.0) and 2016 (M_w 6.4) (Gómez de la Peña et al., 2018; Spakman et al., 2018) on the Al-Idrissi Fault System (Gracia et al., 2019), which is growing through propagation and linking between individual fault segments. Further to the east, earthquakes have occurred over the last decades along the African-Eurasian plate boundary in the Algerian Basin. The 1980 El Asnam (M_w 7.1) earthquake caused between 2,600 and 5,000 casualties (Philip & Meghraoui, 1983). In 2003, the Boumerdès (M_w 6.8) earthquake resulted in 2,266 deaths and 10,000 injured, leaving approximately 200,000 homeless (Meghraoui et al., 2004). Deepwater submarine landslides along the Algerian margin are also associated with highly liquefiable sandy/silty sediments that cause landslides on very gentle slopes not exceeding 4 degrees (see Figure 2.12.).

Submarine mass movements are a significant geohazard in the Western Mediterranean, due either to seismicity (Galindo-Zaldivar et al., 2018) (Figure 3.7.), groundwater charging, high sediment accumulation or anthropogenic modification of the seafloor. For instance, the Tyrrhenian Sea and the Ligurian Sea, with their narrow continental shelves and steep slopes, have experienced human-induced submarine mass movement, that involved a cascade of events resulting in the generation of a tsunami (Colantoni et al., 1992; Sahal & Lemahieu, 2011). Prehistorically, large-volume
debris flows and turbidite events were triggered by catastrophic slope failures that resulted in the transport of enormous volumes of sediment (~500 km³) from the continental margins to the deep sea (Rothwell et al., 1998). One example is the BIG’95 event on the Iberian margin, which occurred 11,500 years ago, covering an area of 2,200 km² (roughly the size of Luxembourg), with 26 km³ of debris. Megaturbidite events are triggered by seismic activity or may result from gas hydrate release (Nisbet, 1992) and pose a severe hazard to offshore infrastructure. Countless small submarine landslides occur in the most active parts of the Western Mediterranean Sea (see Figure 5.1).

Hazardous active volcanoes in the Western Mediterranean include Mount Etna (the largest and most active volcano on the European mainland), Vesuvius, Ischia and Campi Flegrei in the Gulf of Naples, Stromboli and Vulcano in the Aeolian Islands, and the Pantelleria Island and Ferdinandea volcano. These rank amongst the world’s most active volcanoes and are in a state of almost constant activity. Mount Etna (Figure 3.8.) and Vesuvius were designated as Decade Volcanoes by the United Nations⁶, worthy of close study in light of their potentially large, destructive eruptions and proximity to densely populated areas. In addition to eruptions, volcano flank failure or collapse triggering catastrophic tsunamis in Ocean island volcanoes or flanks near the shoreline also pose potential hazards (Urlaub et al., 2018). Such collapses have been seen in Ischia (Chiocci & De Alteriis, 2006) and Stromboli (Tibaldi, 2001). At Mount Etna, continuous onshore GPS measurements since the early 1980s have shown large-scale seaward motion at an average rate of 3-5 cm/year. Recent seafloor geodetic observations confirm similar motions on the submerged offshore flank of Mount Etna (Urlaub et al., 2018).

In the Tyrrenhian Sea, large submarine volcanoes such as the Marsili Seamount, which is as high as the Mount Etna volcano, is active with eruptions dating back only a few thousands of years (Iezzia et al., 2014). Possible flank collapses of Marsili volcano would generate tsunamis affecting the whole southern Tyrrenhian Sea (Teresita et al., 2019).

3.3.2 The Eastern Mediterranean

The Eastern Mediterranean stretches from the Italian Peninsula to the Levant in the east. The destructive plate boundary between Eurasia and Africa runs along the Calabrian, Hellenic and Cyprus arcs as well as the Herodotus Basin, the Nile delta and the Levant Basin (Figure 3.9), where the plate subdivides into smaller fragments (Anatolian plate and Arabian plate). The main marine seismogenic zones in the Eastern Mediterranean are the Calabrian, Hellenic and Cyprus arcs and the North Anatolian Fault, all of which are recurrent sources of tsunamis.

The Hellenic Arc creates large earthquakes commonly associated with large tsunamis. The largest known earthquake (Mw 8.3) in

the Mediterranean Sea occurred in 365 CE with its epicentre located offshore from western Crete (Papazachos et al., 2000). This earthquake generated a tsunami that was most destructive along the coast of western Crete and in the Nile delta in Egypt (Tinti et al., 2005). This tsunami created giant turbidity currents and deposited a well-recognizable sediment unit throughout the Mediterranean Sea (Polonia et al., 2016). The second largest earthquake (Mw 8) and a tsunami occurred in 1303 in the Hellenic Arc. It caused widespread damage along south-eastern Crete, southern Rhodes, western Cyprus, southern Syria, northern Israel, and the Nile delta region (e.g. Guidoboni & Comastri, 2005).

Seismogenic fault zones between the Eurasian and African plates that create a sharp boundary between the deep Oceanic crust of the eastern Mediterranean and the shallow continental crust of the Sicily Channel, have been identified in the Ionian Sea and adjacent margins, including the Malta Escarpment. All these faults have the potential to generate large earthquakes and associated tsunamis (Tselentis et al., 2010; Polonia et al., 2011), as documented by the 1908 (Mw 7.1) Messina earthquake and tsunami, which left >80,000 dead in the region surrounding the Messina Strait that separates Sicily from the Italian mainland (Calabria, see Section 4.1.2 for more details). The Calabrian Arc is also known for its vigorous fluid activity, documented in mud volcanoes, pockmarks and active gas-seepage sites (Papathodorou et al., 1993).

Calculations have shown that a tsunami with a maximum amplitude of up to a few metres can be expected in the Adriatic Sea, despite its overall shallow water depth (typically less than 400 m) (Paulatto et al., 2007). This concurs with a number of historical events in the region, mostly generated by moderate-sized earthquakes (Mw ≤7). The coasts enclosing the Adriatic Sea host numerous tourist destinations and are home to millions of people.

Further east in the Levant Basin, earthquakes generated along the Cyprus Arc and submarine landslides from the Nile delta front pose significant geohazards. The rate of seismicity here is lower, possibly because the plate moves faster (McClusky et al., 2003). Historically, fifteen known strong destructive earthquakes have hit Cyprus (Papazachos & Papaoianou, 1999), with the most recent being the 1996 (Mw 6.8) Paphos earthquake (Wdowinski et al., 2006). Large earthquakes in the Cyprus Arc and along the Dead Sea Transform Fault have the potential to trigger submarine landslides especially from the Nile delta.

The major geohazards in the northern Aegean Sea and the Sea of Marmara originate from the activity of the North Anatolian Fault: the major boundary between the Eurasian and Anatolian-Aegean plates. In the Sea of Marmara, the North Anatolian Fault creates recurrent, devastating earthquakes of Mw >7 every ~250 years in an extremely densely populated area. Historically, 55 major earthquakes and 30 tsunamis have occurred in the last 2,000 years (Yalciner et al., 2002) with the 1999 Izmit earthquake (Mw 7.6) causing 2.5 m high tsunami waves in the gulf and more than ~18,000 casualties. In 1509, the Little Apocalypse, a Mw 7.2 earthquake, was associated with >6 m high tsunami waves, and caused widespread damage in Istanbul and the surrounding Marmara region (Guidoboni et al., 1994; Ambraseys, 2002).

Figure 3.7. Main geological features of the Western Mediterranean Sea. The front of the main tectonic thrust belts is depicted in red, earthquake events are in orange and pink stars refer to tsunamigenic (tsunami forming) earthquakes. Tsunamigenic zones are indicated by letters (i.e. CoS, NAC, LS, and WCITS).

Figure 3.8. Satellite image of erupting Mount Etna and the city of Catania south of the volcano, and a multibeam bathymetry of the facing Ionian Sea. Catania was destroyed in 1663 by a volcanic eruption that reached the sea and in 1693 by a strong earthquake (Mw 7.4) and tsunami that killed 2/3 of the inhabitants of the time. Today, more than 300,000 people live in Catania. GPS data indicate that the eastern slope of the volcano is slowly sliding westwards.
Because transform faults that are unable to generate significant waves predominate in the Sea of Marmara, most tsunamis are triggered by submarine landslides from the steep slopes (up to 29 degrees) of the deep basins (Görür & Çağatay, 2010). Recent modelling results demonstrate that the generation of tsunamis is caused by waves in marine basins or bays with steep slopes, such as the Gulf of Izmit on the easternmost tip of the Sea of Marmara (Elbanna et al., 2021).

The North Anatolian Fault extends from the Sea of Marmara to the northern Aegean Sea (Sakellariou & Tsampouraki-Kraounaki, 2018) and joins the rift zones in mainland Greece. The major faults in this zone can generate earthquakes up to Mw 7.5, including the 2014 (Mw 6.9) Saros Gulf earthquake and the 2001 (Mw 6.4) Skyros earthquakes (Ganas et al., 2005). The North Skyros Basin had two Mw 7.2 earthquakes in 1968 and 1981 (Papazachos et al., 2000). The steep margins of up to ~1600 m deep depressions in the North Aegean (i.e. Gulf of Saros, North Aegean Trough, Skyros Basin and Sporadhes Basin) are prone to submarine landslides and associated tsunamis.

The central Aegean Sea is characterized by seismogenic faults capable of generating up to Mw 7 earthquakes, such as the 1881 (Mw 6.5-7.3) Çesme-Chios earthquake and the recent 2020 (Mw 7.0) Samos-Izmir earthquake which created a 1.9 m high associated tsunami causing 117 deaths. The southern Aegean Sea straddles the Hellenic Arc and its active earthquake fault systems, and includes the volcanoes of the South Aegean Volcanic Arc (Sakellariou et al., 2018). This belt of active volcanoes emits ash and gases into the atmosphere and could cause submarine caldera and flank collapses and landslides, which in turn create associated tsunamis. In 1650, the submarine Kolumbo volcano 8 km from Santorini, erupted pyroclastic flows and volcanic gases and produced a tsunami that caused significant damage and fatalities in Santorini (Dominy-Hewes et al., 2000).

One of the largest volcanic eruptions recorded in Europe was the Minoan eruption of Santorini (Thera) sometime between 1627 and 1600 BCE (Friedrich et al., 2006), which is claimed to have ended, or contributed to ending, the Minoan civilization in the region (Figure 3.10.). This event occurred in several phases, producing huge volumes of ash that reached Scandinavia and Gibraltar, causing the collapse of the volcano edifice and producing tsunami waves up to 40 m high (Sakellariou et al., 2012). The tsunami impacted the whole Aegean Sea up to the west coast of Anatolia (Antonopoulos, 1992). Historically, only the Indonesian volcano eruptions of Tambora (1815) and Krakatoa (1883) had similar magnitudes and these each caused several tens of thousands of casualties and affected global climate (Sigurdsson et al., 2006; Johnston et al., 2014). Volcanic islands of the Aegean Sea are also subject to sector collapses and debris avalanches, as is seen on the seafloor off Santorini, Antiparos and Nysiros (Nomikou et al., 2014).
3.4 The Black Sea

The Black Sea is characterized by two ~2200 m deep basins, the Eastern (EBS) and Western Black Sea (WBS) basins, separated by the Andrusov-Arkhangelsky ridge (Figure 3.11). Prominent transform faults in the Western Black Sea appear to still be active. The area produces $M_w \sim 7$ earthquakes every 400-600 yrs, including the (M_w 7.2) Balchik earthquake in 1901. This was the most powerful earthquake in the Black Sea (Ranguelov & Gospodinov, 1994) and generated a 4–5 m high tsunami. The other historical earthquakes of M_w 6-7 in the area happened in 1738, 1802, 1838, 1940, 1977, 1986 and 1990, close to the Bulgarian and Romanian coasts (Ambraseys & Finkel, 1987). The Western Crimean Fault Zone has caused two M_w 5-7 earthquakes near the Crimean coast in the last 145 years. Multiple other faults have been mapped in the Western Black Sea region (Oaie et al., 2016).

A total of 22 tsunamis were identified in the Black Sea in the last ~1500 years, triggered by earthquakes (Papadopoulos et al., 2011) and submarine landslides. Two of these events, known to have caused ~7 m high surface waves, were observed in Crimea in 544 CE and north of Amasra on the Anatolian coast in 1598. The last event was most probably triggered by a submarine landslide (Altınok & Ersoy, 2000).

The Black Sea is also prone to submarine landslides (and associated tsunamis) by sediment loading, especially along its western, northwestern and northern continental shelf and slopes where deltaic sediments and deep-sea sediment fans of the regions’ major rivers (e.g. Danube, Dniester, Dnieper and Kuban) have accumulated. These areas are also the sites of gas seeps, gas hydrates and mud volcanoes (Oaie et al., 2016), where downslope mobilization of sediments could occur by gas-escape related processes (Figure 3.11). The Black Sea slopes are marked by submarine canyons, where turbidity currents may pose a geohazard risk to submarine engineering structures (Popescu et al., 2014).
3.5 High-latitude and Epicontinental Seas

The North Atlantic and Arctic Ocean (Figure 3.12.) have been affected by some of the largest submarine slope failures documented anywhere on Earth. Gigantic landslides occur on steep continental slope while shallow water landslides are common in fjords. One of the most catastrophic submarine landslides, the Storegga slide, occurred off Norway’s continental shelf approximately 8,200 years ago. It generated a tsunami that was recorded in the sedimentary record along the east coast of the United Kingdom and as far north as Iceland. Tsunami deposits from the Storegga slide have been found in coastal lakes up to 10-12 m above sea level in western Norway, 3-6 m in Scotland, and >20 m on the Shetland Islands (Bondevik et al., 2005).

Other slides of similar size and run-up occurred off the coast of Norway and Svalbard. These slides depend on glacial processes: mainly rapid deposition of glaciogenic sediments in front of cross-shelf troughs, i.e. the valleys where the main ice streams flowed during glacial periods. While most of the slopes in front of cross-shelf troughs have already failed, some still exist in settings that may be unstable, such as the northern flank of the Storegga slide, that can fail in the future. Similar to earthquakes in the Mediterranean Sea and the Gulf of Cadiz, it is evident that these failures will occur in the future but, so far, with the available technology there is no way to predict them.

Sediment accumulation is driven by climate oscillations, the naturally reoccurring changes in climate. Glacial sediment accumulates during glacial periods of low sea level near the shelf edge and can later be mobilized or spilled over by a triggering mechanism during interglacial high sea level periods. This occurred for instance to glacial sediments making up the North Sea Fan as glaciogenic debris (Nygård et al., 2007). On average, the Arctic warms much quicker than the global climate, therefore the European Arctic is a fast-evolving environment. Ice shields and glaciers retreat, and bottom water temperatures rise. This may affect submarine slope stability in two ways: 1) Warming will lead to a change of the gas hydrate stability zone and may destabilize the slopes both through the removal of cementation and through the build-up of overpressure; and 2) Ice shield retreat will accelerate surface uplift and may cause earthquakes that can trigger slope failures, a scenario that was proposed to be the cause of the Storegga slide (Berndt et al., 2009).

Fjords host extensive geohazards (see Box 1) and are considered one of the major submarine landslide areas (Hampton et al., 1996). Relatively small but frequent landslides occur on coasts where people and infrastructure are restricted to narrow areas close to the coastline. These events may cause significant damage and...
casualties, as happened with the Kitimat landslide (Prior et al., 1982), the Balsfjord landslide (Rygg & Oset, 1996), and the Finneidfjord landslide (Figure 3.13., (Longva et al., 2003)). Fjord landslides are caused by a variety of natural factors, but human activity, such as controlled use of explosives during construction works, may play an important role, accounting for or contributing to 60% of the fjord slides (L’Heureux et al., 2013). Finally, rockfall on the steep fjord wall may cause tsunamis that may be funnelled and amplified by the complex fjord morphology (Blikra et al., 2006).

The European epicontinental seas, the North and Baltic Seas are fairly tectonically inert, but do host some other geohazards. The North Sea in particularly poses hazards for gas and oil exploration, and increasingly, for carbon capture and storage operations and infrastructure. The primary hazard is from pockets of shallow gas or gas hydrates that can damage equipment and/or endanger oil rigs if not detected and subsequently intersected by drilling. Finally landslides have been recorded in both the Baltic and the North Sea and remain a geohazard risk.
How do marine geohazards impact society and the Blue Economy?
The European Seas have played a central role in European culture and trade since ancient times. Traditional maritime use focused on fisheries and transport, and later on tourism, hydrocarbon exploration and internet data transfer. Today the expansion of economic activities is driven by a combination of population growth, rising incomes, dwindling natural resources, responses to climate change and pioneering technologies. The ‘Blue Economy’ thus encompasses established Ocean-based industries as well as emerging and developing activities that are re-shaping and diversifying maritime industries (OECD, 2016). These activities include offshore renewable energy, communication, marine cruise tourism, offshore aquaculture, marine biotechnology and bioprospecting, seabed mining, aggregate extraction, Ocean monitoring, control and maritime surveillance. Further activities, for which established markets do not yet exist include carbon sequestration, coastal protection, waste disposal and conservation and restoration of biodiversity. In 2018, the EU Blue Economy directly employed close to 5 million people, and generated around €750 billion in turnover and €218 billion in gross value added (European Commission, 2020). In 2020, the COVID-19 pandemic caused a decline in Blue Economy activities, but the overall dynamic development of the sector prior to the pandemic indicates that we will see a swift recovery in the near future.

As the variety of Ocean uses is increasing and the investments in Ocean development and seafloor infrastructure are rising (Voyer & van Leeuwen, 2019; European Commission, 2020), the social and economic consequences of marine geohazards become more important (Figure 4.1). The impacts of marine geohazards on society and the Blue Economy are as diverse as the hazards themselves. Some marine geohazards (e.g. fluid activity, migrating bedforms) will mostly affect the seafloor, while others have the potential to severely afflict coastal communities and/or generate reverberations on a transnational scale (e.g. high-magnitude earthquakes, tsunamis).

This chapter provides a perspective on societal impacts and evaluates how marine geohazards can jeopardize the different components of the Blue Economy by discussing case study examples that highlight the effects on different assets.

Figure 4.1. Vineyards in the Azores Islands are planted on rich volcanic soils and ‘surrounded by ‘currais’ (corrals), geometric squares, rectangles, or semi-circles separated by walls of stacked basalt stones. This practice, protected by UNESCO World Heritage since 2004, demonstrate the cultural implications of living on a volcano.
4.1 Impact on coastal communities, livelihoods and loss of lives

The significant and increasing population along the European coast has led to increased exposure and vulnerability to marine hazards. The most devastating hazards in terms of casualties and economic loss involve earthquakes and tsunamis. Earthquakes (or seismic shaking) severely affect building structures, local and regional infrastructure and supply chains. Earthquakes are not only a major hazard for communities situated in the vicinity or along active fault systems, but may also cause cascading effects, including landslides, tsunamis and liquefaction (a loss of shear strength of soil causing a sudden collapse of buildings).

Other than earthquakes, tsunamis have the potential to cause major damage and casualties at great distances from their origin and affect large sections of coastlines. Tsunamis are devastating for coastal communities and disrupt local or even global economies. They cause extraordinarily large numbers of casualties and distress the physical and mental health of the survivors (Dilek et al., 2021; Tashiro et al., 2021). Their destructive power is largely a result of inundation and the energy transported by a tsunami wave, which severely impact buildings and infrastructure that are further affected by floating debris. Additional damage occurs when the waters retreat and drain away from the coast causing erosion. Large tsunami flooding may also result in the salination of freshwater reservoirs, groundwater aquifers and lakes. Contamination of drinking water fosters the spread of infectious diseases.

As earthquakes and earthquake-generated tsunamis are the most destructive events for coastal communities and public health, we describe three past events that have particularly affected Europe.

4.1.1 The 1755 Lisbon earthquake and tsunami (Portugal, Gulf of Cadiz, Morocco)

The Lisbon earthquake occurred on the morning of Saturday 1 November 1755, at around 09:40 local time (Figure 4.2.). The earthquake caused most of the population to rush towards the docks for safety. Around 40 minutes later, the receding sea unveiled the seafloor and then a large tsunami inundated the harbour and the downtown area, moving at great speed along the Tagus river (Zitellini et al., 1999; Viana-Baptista et al., 2006). Intense fires in the aftermath of the tsunami lasted for five days and destroyed most of what was left of Lisbon (Baptista et al., 1998). The earthquake, fires and tsunami combined almost totally destroyed Lisbon and caused enormous damage at several localities in the Gulf of Cadiz, including Cadiz, and along the Atlantic coast of Morocco, including Fez and Tanger (Figure 3.5.). Seismologists estimate that the earthquake had a magnitude of Mw 8.5–9.0, with its epicentre in the Atlantic Ocean about 200 km west-south-west of Cape St. Vincent (Figure 3.5.). It was the third known large-scale earthquake to hit the city (after 1321 and 1531). Estimates of the death toll are highly variable (because of a lack of census of the existing population) but in Lisbon alone more than 10,000 causalities have been hypothesized (Pereira, 2009). The total number of victims may have been as high as 45,000, making the 1755 Lisbon earthquake one of the deadliest earthquakes in European history. Samples of marine sediments recovered in the Horseshoe Abyssal Plain and other places around the north Atlantic coast reveal the traces of a sediment layer corresponding to the 1755 Lisbon earthquake and document the far-field effects of the disaster (Gràcia et al., 2010).
4.1.2 The 1908 Messina earthquake and tsunami (Sicily, Calabria)

The 1908 (Mw 7.1) Messina earthquake and tsunami had a much lower magnitude but were still destructive and deadly (Figure 4.3). They caused extensive cascading effects, including coastal retreat, liquefaction, slope movement, ground settlement, and gas emission (Comerci et al., 2015). Intensive ground shaking lasted for at least 30 seconds and affected a region of ≈4,000 km². Approximately ten minutes after the earthquake, tsunami waves hit the coast destroying the towns of Messina and Reggio Calabria and causing thousands of victims among the earthquake survivors (Pino et al., 2009). The tsunami inundated both sides of the Messina Strait with run-up heights reaching 13 m. A comparable event today could equal or surpass the death toll of ~80,000 in 1908, especially if it occurred during the summer tourist season.

The Messina event was one of the first earthquakes in Europe to occur in the instrumental period (Mercalli, 1909), and its epicentre was located in the Messina Strait between Sicily and Calabria, although its exact source remains debated (Meschis et al., 2019; Barreca et al., 2021). The scale of destruction from this event was tremendous. At least 91% of the buildings in the town of Messina were destroyed or heavily damaged and the town lost around half of its population. The earthquake occurred in the early morning, surprising most victims in their sleep. The town was crowded on this particular day with overnight visitors attending a performance of Guiseppe Verdi’s opera Aida the previous evening (Mowbray, 1909), showing the impact of tourism even over a century ago. The shoreline experienced several centimetres of subsidence into the sea, affecting the commercial harbour. Fires and earthquake aftershocks continued to cause havoc. The historic town centre of Reggio Calabria was also almost completely levelled. Commercial, municipal, residential, military and public buildings were affected. Because civilian and military hospitals in both cities were affected, medical support for the survivors was disrupted until outside relief arrived. Communication was also interrupted due to damaged telegraph lines and railways.

Figure 4.3. Victims and destroyed buildings on the Messina seafront after the 1908 earthquake and tsunami.
4.1.3 The 1999 Eastern Marmara earthquake and tsunami (Turkey)

The North Anatolian Fault zone marks the transform plate boundary between the Eurasian and Anatolian-Aegean plates (Figure 4.4.). The fault experienced a remarkable series of earthquakes, with ruptures starting in 1939 on its eastern segment and progressively moving westwards towards the Sea of Marmara. The 1999 (Mw 7.6) Izmit earthquake in the eastern Sea of Marmara caused subsidence and coastal landslides along the southern coast, and a 2.5 m-high tsunami run-up along the shores (Altınok et al., 2001). Earthquake shaking lasted for 37 seconds and severely damaged the town of Izmit. Ground ruptures were as wide as 5.7 m. The event resulted in more than 17,000 people dead, 24,000 injured, and more than US$10 billion of damage to the Turkish economy. The earthquake damaged 120,000 houses beyond repair and caused 20,000 buildings to collapse, making more than 250,000 people homeless after the earthquake. Damage to transportation infrastructure, including bridges and tunnels, was significant. Heavy environmental pollution occurred in the Izmit Gulf as a result of disruption to the sewerage lines, spillage from chemical and oil storage tanks and a refinery fire, which in turn led to anoxia and mass fish mortality (Balks, 2003; Giuliani et al., 2017; Morkoc et al., 2007). Attempts to extinguish the refinery fire were hampered by breakages in water pipelines, requiring the employment of aircraft to douse the flames with foam. Due to the breakdown of telephone communication and damage of roads, coupled with an initial underestimation of the earthquake’s magnitude and associated destruction, rescue operations were delayed (Barka, 1999).

Today, the offshore portion of the North Anatolian Fault, which consists of several segments, is monitored by a seismological network, and by land- and submarine-based observations (Figure 4.4.). Recent observations indicate that the segment located 12 km south of Istanbul is currently not moving while the segment to the west appears to have a slow more or less continuous movement (e.g. Ergintav et al., 2014; Lange et al., 2019; Yamamoto et al., 2019). The next earthquake is expected to occur close to Istanbul where a population of about 16 million people lives. Scenarios predict ~100,000 casualties and damage to property and industrial facilities in Istanbul as well as around the Sea of Marmara. This region accommodates ~30% of the Turkish population and ~60% of Turkish industry.

4.2 Impact on coastal infrastructure

Facilities of vital importance to socio-economic activities are often located near the shoreline and include port facilities for handling shipping, refineries, communication infrastructure, transportation facilities and power plants. Their coastal location is commonly associated with existing transportation and shipping infrastructures and, in the case of industrial plants, to their high demand for cooling water.

The orographic setting in several European regions, where steep mountain ranges arise very close to the coast, forces transportation to be confined to narrow coastal plains near or at the shoreline. Crucial infrastructure such as railways, major roads, and airports as well as industrial infrastructure are therefore often located a few hundred or even only a few tens of metres from the shore, and their failure would cause significant economic and social repercussions. This increases their vulnerability, because of the lack of a coastal buffer and because of the presence of coastal cliffs which can be subject to rockfalls. Moreover, where tectonic uplift occurs, the high sedimentation rate, the steepness of the continental slope (carved by submarine canyons whose heads often reach the coastline), and the high seismicity rate create a seafloor that is typically prone to geohazards.

Ports and harbours are intrinsically the most exposed to coastal geohazards. Earthquakes and submarine landslides have the potential to damage port structures, either directly through structural collapse, or indirectly via the tsunami that they can generate. Tsunami waves can result in strong currents in ports and harbours, that can damage and destroy structures even without
inundation (Admire et al., 2014). Many harbours are located at or near canyon heads (Figure 4.5.), and thus in areas subject to landslides due to their intrinsic retrogressive (i.e. coastwards) evolution. The reason that harbours are located near canyon heads is that historically, small fishing wharves were constructed there because complex submarine canyon morphology and bathymetry dissipated storm waves because of refraction (Figure 4.5.). These small villages, as many along the coasts of the Mediterranean Sea, became towns with large harbours that now lie in a very hazardous setting.

Sometimes human activity may trigger submarine landslides in the vicinity of harbour structures. Harbour construction, maintenance or growth (e.g. widening) often require large engineering works that can overload the seafloor, causing instability. This was the cause of the Nice and Gioia Tauro events (Colantoni et al., 1992; loualalen et al., 2010) as well as for the majority of coastal landslides in Norway (L’Heureux et al., 2010). One example of a region highly exposed to geohazards is the densely populated Ligurian continental margin off Nice (Western Mediterranean), where a submarine landslide in 1979 created a tsunami that caused several deaths and significant material damage. Accurate geohazard assessment of this area is particularly important because of its vicinity to Nice Airport and the connection to the steep slopes of the canyon creating a significant tsunami hazard to the area. Nice Airport is the third largest in France, and the area is one of the most significant economic centres in France, with over half a million permanent residents and millions of tourists annually. Since 2015, a subsea cabled observatory (EMSO Nice) has been collecting data through an array of in situ instruments to study these geohazards (Figure 4.6.).

Figure 4.5. Note how the two following examples of harbours are located exactly at the canyon heads.

Left: Bathymetry map of Garrucha canyon (Almeria, Spain). Middle: Cirò Marina Canyon (Calabria, Italy).

Right: Modelled wave height at La Jolla canyon (California, USA). Complex bathymetry lowers the wave energy on the coast facing the canyon head. This may explain the coincidence between canyon heads and harbours and ports.

Figure 4.6. Left: Bathymetric map showing the 1979 landslide scar located between Nice Airport and the head of the canyon. Symbols indicate an array of in situ instruments connected to a seafloor cable network (the EMSO-Ligure Nice observatory), as shown in preliminary graphs in Bompais et al., (2019).

Right: Aerial view of Nice Airport with the urbanized coastline of the Baie des Anges in the background.
The increased use of the coast for urban and industrial settlements will occur both by expanding existing infrastructures, by establishing new infrastructures and by reclamation of marine areas. Airports, container terminals, and even amusement parks (e.g. Hong Kong Disneyland) have been built on land reclaimed from marine areas. Such coastal engineering works require deep knowledge of possible geohazards. In Greece, the new Patras harbour was built in an area affected by active fluid seepage from the seafloor, which has already been activated twice by earthquakes. (Hasiotis et al., 1996; Christodoulou et al., 2003; Christodoulou, 2010).

Nuclear power plants are one of the most sensitive infrastructures to tsunami hazards, as the 2011 Fukushima Daiichi incident in Japan demonstrated. On the Mediterranean coast of Spain, the Vandellòs nuclear power plant (Figure 4.7) is located in the town of Vandellòs i Hospital de l’Infant (Tarragona), and is constructed on a 20 m high platform to protect against rising sea level. However, the Vandellòs nuclear power plant is situated in an area where active fault systems onshore and offshore have been identified as a possible geohazard, with the potential to trigger a tsunami that would affect the plant and the surrounding (densely populated) coast (Perea et al., 2012). Similarly, Turkey is currently constructing a nuclear power plant in Akkuyu on the Mediterranean coast, which like numerous other locations around Europe may be prone to marine geohazards.

Figure 4.7. The Vandellòs nuclear plant located on the shores of the Mediterranean Sea in Spain.

4.3 Impact on offshore infrastructures

Natural hazards are a major threat to all offshore industrial activities, i.e. oil and gas facilities (rigs and pipelines), communication cables, wind farms, aquaculture and the many other activities that will be developed in the future (renewable energy from waves and tides, deep sea mining, etc.).

Landslides, shallow gas and gravity flows may cause hydrocarbon infrastructures to fail and that may lead to the release of hazardous materials (DNV, 2002). Earthquakes and volcanic activity pose risks to seabed structures. Such hazards triggered five incidents at fixed seafloor structures between 1970 and 2013: Three in the North Sea and two in the Caspian/Black Sea. Two of these events were related to submarine gas eruptions.

There are approximately 600 oil and gas rigs operating in the North Sea. The North Sea is not known for its earthquakes and volcanoes, but nevertheless these have accounted for some damage and accidents (Necci et al., 2019). In 2016, a potentially catastrophic incident in the North Sea Troll field was reported when large quantities of fluid and gas were released from the reservoir below the Songa Endurance drill rig. Drilling personnel had to activate the blowout preventer and non-essential personnel had to be evacuated from the platform. The incident could have resulted in the loss of lives and the significant release of hydrocarbons, as happened in 2010 in the Gulf of Mexico with the Deep Water Horizon incident (Bly, 2011).

The global network of submarine communication cables plays an increasingly crucial role in our modern society. More than 95% of international communication traffic is routed via submarine fibre-
optic cables (Carter *et al.*, 2009). Seafloor telecommunication cables are increasing in number due to the exponential need for internet data transfer (Figure 4.8.). These cables lie on the seafloor or are buried in the shallow subsurface and could be affected by earthquakes, volcanic eruptions, submarine landslides and runout sediment flows. Although less than 10% of cable faults are caused by natural hazards, this number rises to about 30% for cables in water deeper than 1,500 m and away from zones of human offshore activities (Carter *et al.*, 2009).

Soon after the first deployment of submarine cables in the second half of the 19th century, geohazards started causing cable damage. The first significant cable break was reported in 1883 after the tsunami triggered by the Krakatoa volcanic eruption (Winchester, 2003). The eruptions of Mount Pelée in Martinique and La Soufrière in St Vincent, both on 7 May 1902 were accompanied by the loss of submarine cable contact (Carter *et al.*, 2009). The occurrence of the 1902 and 1907 submarine volcanic eruptions in the Azores Islands was inferred from the observation of the recovered cables showing melting of their insulation material (1902), and from cable burial due to volcanic products deposition (1907), and evidence of cable corrosion attributed to hydrothermal vents was reported as the origin of cable failures (Chaves, 1904, 1915).

The 1929 Grand Banks (Canada) earthquake and associated landslide is the first documented evidence of turbidity currents breaking telegraph cables (Piper *et al.*, 1988; Fine *et al.*, 2005). The Mediterranean Sea has also experienced several cable breaks caused by turbidity currents since the Messina 1908 earthquake (Ryan & Heezen, 1965). Both the human-induced 1977 Gioia Tauro port and the 1979 Nice airport submarine landslides broke submarine cables crossing the canyons where the landslides occurred (Mulder *et al.*, 1997). The Boumèrdes 2003 earthquake (see figure 2.12) caused 29 submarine cable breaks at the foot of the Algerian continental slope over a distance of ~150 km (Cattaneo *et al.*, 2012). Cables breaks disrupt internet communications, electronic banking and commerce. By using a global database of subsea fibre-optic cables, Pope *et al.*, (2017) reported about 8 cases of cable breaks following earthquakes in the Mediterranean Sea. These results show the need to develop geohazard reconnaissance, prevention programs and mitigation plans to reduce the vulnerability of strategic and costly telecommunication infrastructures.

Similar to coastal infrastructure, offshore industrial activity can generate hazards such as seismicity associated with energy production, which caused the interruption of the Castor project (Section 2.7). Induced seismicity poses a hazard to the exposed population and structures (Cesca *et al.*, 2021). Induced seismicity may also be caused by injecting carbon dioxide into exhausted reservoirs, where the aim is to sequester carbon dioxide captured from fossil fuel production or other sources into the Earth’s crust as a tool for climate change mitigation.
4.4 Impact on tourism and fisheries

The impact of marine geohazards adversely affect local economies of coastal areas, as events such as the eruption of a submarine volcano or an earthquake make those areas less attractive as they may be deemed as not safe, even if no lives are lost. Related navigation hazards, pollution or damage in ports and harbours as the consequence of marine geohazards could also affect fisheries activities and the local economy. The series of events that occurred near El Hierro in 2011 and afterwards show the impact that marine geohazards have on local communities, tourism and fisheries.

The Canary Islands are a highly appreciated tourist destination, but they are also a volcanically active archipelago located in the north-eastern Atlantic margin. El Hierro is the youngest of these islands and the latest to have recorded a volcanic eruption. On 10 October 2011, after more than 10,000 earthquakes recorded in a three-month period, a volcanic tremor marked the beginning of a submarine eruption (Santana-Casiano et al., 2017). The volcano, later named Tagoro, is located 2 km south of El Hierro Island (Figure 4.9), in the margin of the ‘Mar de las Calmas’ marine reserve, one of the richest biodiversity areas in the region. On this island of roughly 10,000 inhabitants, around 500 people had to be evacuated from their homes, and the main traffic tunnel of the island was closed as a precaution. In the end, the eruption did not cause any personal or material damage, but the impact on the economy was severe. The eruption directly affected three of the main economic activities on the island: tourism, artisanal fishing, and diving. Despite the fact that the eruption was proven not to be dangerous to the population, potential visitors still perceived it as a threat, even after 2011, severely harming the tourism sector. The population was already affected by the 2008 global financial crisis, and the economic situation on the island was extreme. The economic losses due to the 2011 volcanic crisis were estimated to be as high as €20 million, while the financial aid provided by the Spanish government was only €2–5 million.

The eruptions came to an end in March 2012 (Jurado et al., 2020). The local marine biota quickly recovered, and the fully restored ecosystem is now an international attraction for diving and a constant source of fish. In addition, the volcano has evolved into a hydrothermal system that still remains active, and has become a scientific reference point for shallow volcanic and hydrothermal systems. The volcanic event was also a learning experience for the development of specific and advanced protocols for the protection of the population in case of similar events in the region. Similar events occurred in Europe in Serreta (Azores Islands) in 1999-2000 and in Pantelleria (Sicily Channel) in 1891.

4.5 Perception and consideration of marine geohazards by society, industry and public authorities

The sea is often considered a tranquil and contained water mass and for the general public it is difficult to perceive and evaluate marine geohazards (Cerase et al., 2019), which virtually come ‘out of the blue’. This misperception can cause people to flock to the beach to observe a sea-level retreat even though this is a tell-tale sign of, for instance, a landslide-generated tsunami, or to wander curiously towards the newly emerged seafloor rather than to run for their lives away from the coast and the incoming tsunami waves (Guastello et al., 2008).

In contrast, understanding of marine geohazard risks within offshore engineering is very high. In fact, industries (including those linked to rigs, wind farms, cables and pipelines) are well aware of marine geohazards and they conduct marine geological surveys that are always site-specific, i.e. performed in the vicinity of the seafloor location where the infrastructure will be placed. In comparison, public authorities responsible for the management and development of coastal communities and infrastructures are typically more aware of land-based natural hazards than of potential offshore threats, until they occur. This is because the technologies needed to highlight marine geohazard features are relatively new and there was limited use of the seafloor even until a decade ago. There is also a lack of specific legislation concerning marine geohazards (see Box 4), and marine geohazards are not considered in for instance Integrated Coastal Zone Management
or in Maritime Spatial Planning. Although Maritime Spatial Planning is conducted based on a broad range of integrated expertise, marine geohazards are often not included. The possibility of catastrophic events, including small-scale events related to extensive risk (see Box 1) such as submarine landslides or a collapse at the head of a canyon, should be included in these plans. These hazards should not only be included because of their potential to cause tsunamis but also because they should guide the placement of structures, the granting of permits, the definition of scenarios, and the setting-up of procedures to manage specific emergencies resulting from marine geohazards. At present, the Maritime Spatial Planning Directive completely lacks this aspect, and it would be beneficial to mitigate the ecological and socio-economic effects of marine geohazards in Europe more explicitly.

BOX 4: A MAGIC FAILURE, WHEN KNOWLEDGE IS NOT ENOUGH

Following the 2002 tsunami generated by a submarine landslide at Stromboli in Italy, the Civil Protection Department funded a €5.25 million project to identify and map marine geohazards. The project, named MaGIC (Marine Geohazards along the Italian Coasts), involved the whole Italian Marine Geology community including three institutes of the National Research Council (CNR), seven universities, and the Institute of Experimental Geophysics and Oceanography (OGS). The study produced a detailed, coordinated, standardized map of the geohazard features present on the Italian Continental Margin (Chiocci & Ridente, 2011). The project delivered 72 maps at 1:50,000 scale (see Figure 4.10.) and detailed publicly-available monographs. The Civil Protection Department transferred this knowledge to the local authorities, however, this knowledge is likely to remain operationally unused, as there is currently no framework to transform the hazard information into mandatory legislation that imposes constraints or emergency plans.

For onshore volcanic hazards, alert levels and emergency plans exist; legislation constrains specific construction depending on local onshore seismic hazards; detailed mapping and land-use of potentially flooded river valleys is mandatory. By contrast, marine geohazards are not considered in legislation.

![Figure 4.10. One of the 72 sheets at 1:50,000 scale produced by the MaGIC project, which mapped geohazard features in Italy: violet = canyon, green fluid = escape, red = landslide, reddish brown = volcanic vent. All sheets are available at https://github.com/pcm-dpc/Magic.](https://github.com/pcm-dpc/Magic)
How can science transform hazard assessment in Europe?
Scientific research on marine geohazards is crucial to understanding the characteristics, magnitude and recurrence intervals of events (i.e. how often do they occur at the same location). This is the basis and prerequisite for a thorough assessment of the related risks (Ercilla et al., 2021). For instance, the magnitude of an earthquake that a fault may generate depends on its geometric characteristics and relationship with deep-rooted active geological structures; the tsunamigenic potential of a volcano depends on the explosivity of its eruption(s) in the past and stability of its flanks. The scale of the geohazard is very different if an area is subject to a landslide every year, once every ten years, once a century, or once a millennium. Scientific studies on marine geohazards therefore focus on: 1) identifying past geohazard events and evaluating their frequency, as well as 2) monitoring current active processes that may evolve into a marine geohazard. Both approaches are discussed in the following sections.

5.1 Characterizing past geohazard events and assessing their frequency

Forensic analysis of past events to compile catalogues of their occurrence is essential to develop and validate future scenarios (including cascading phenomena) as well as to assess their possible occurrence in a probabilistic way. Features and traces of marine geohazards on the seafloor are obviously difficult to access and therefore their detection is strongly dependent on the technological advancements that allow the imaging of the seafloor and subsurface structures. For instance, the development of multibeam systems a few decades ago (Figure 5.1.) have allowed us to discover the widespread presence of geohazard features on continental margins. Similarly, in active geological areas such the Mediterranean Sea and the Gulf of Mexico, mass wasting deposits were found to cover 18% and 27% of the seafloor respectively (McAdoo et al., 2000; Urgeles et al., 2013). However, due to the scarcity of studies, only a tiny fraction of marine geohazard seafloor features are reported in the scientific literature. Depending on the source of data, the density of geohazard features varies widely. Casas et al., (2016) defined some >400 submarine landslides in the Gioia Basin (Italy), built on full-coverage seafloor mapping, accounting for one scar per 8 km². In this studied area, where a census was done based on published data only, a density of one landslide scar per 4,000 km² for the Mediterranean Sea was estimated (i.e. 3.5 orders of magnitude lower).

The main archives of marine geohazard events are the marine sedimentary successions, and historical and archaeological reports. The locations and recurrences of earthquakes and tsunamis are compiled in various catalogues for regions such as the Mediterranean, where long historical records are available (Guidoboni et al., 1994; Ambraseys, 2002; Guidoboni et al., 2005; Ambraseys & Synolakis, 2010). Although such records extend back two or three millennia, they are often too short to cover several event cycles. In addition, historical records include uncertainties about the location and magnitude of the events and may be scarce for certain regions.
In contrast, marine geological (sedimentary and morphological) records can contain information on the presence, mechanism and long-term frequency of geohazard events. However, detailed and complete maps of marine geohazards do not exist for most of the European seas. This is the reason why Figure 3.2. only shows the distribution of these hazards based on instrumental data or modelling (seismicity, earthquake-induced tsunami modelling). It was not possible to map all of the marine geohazards discussed in this document, due to the lack of complete data for all types of hazard considered in this document. Features such as active faults, landslides, fluid escape features, and even details on volcanic vents, are mainly collected only by the scientific research community, and are therefore rare, sparse and driven by scientific interest rather than by the need for a homogeneous mapping of marine geohazards in European seas (Chiocci et al., 2011). However, some remarkable examples exist of censuses of geohazard features based on interpretation of full-coverage data, including the Spanish Quaternary Faults of Iberia (QAFI) for active faults10, the Irish Infomar11, the Norwegian Mareano12 and the Italian MaGIC Project for marine geohazard features (Chiocci & Ridente, 2011). EMODnet13 collects and homogenises published cartographic products for different geological features in European seas, including geohazard-bearing features. However, published data are not inherently homogeneous and often do not have full coverage, depending on the level of knowledge available in the different marine regions. Consequently, they commonly underestimate the true scale of marine geohazards in an area.

Geohazard events can be reconstructed from high-resolution seismic reflection profiling (with a resolution of few decimetres in the shallow subsurface using deep-tow instruments), high-resolution swath bathymetry (with a centimetre resolution using autonomous underwater vehicles) and by analysis of gravity/piston and drill-hole corers. The events can then be dated with high precision using radiocarbon, optically stimulated luminescence/thermoluminescence and tephrochronological techniques, and with lower precision by paleomagnetic, oxygen isotope and biostratigraphy methods.

Currently, submarine paleo-seismological investigations use high-resolution seismic data, coupled with sediment corers (Figure 5.2.) and boreholes data. The combination of this data helps to determine past fault activity and slip rates as well as long-term earthquake records in seismically active marine basins. These include convergent settings such as the Ionian Sea or plate margins around the Pacific (Pouderoux et al., 2012; Polonia et al., 2015; Ikehara et al., 2016; Goldfinger et al., 2017), as well as basins developed along transform plate boundaries such as the Sea of Marmara (Armijo et al., 2005; Gasperini et al., 2011; Cagatay et al., 2012; Yakupoglu et al., 2019). In these tectonically active basins, the long-term seismic activity has been reconstructed by analysing and dating seismically-triggered mass movement units (seismoturbidites) that show distinct sedimentary structures and textures. Past explosive volcanic activities are present as layers of volcanic ash (tephra) in marine and lake sedimentary successions. These layers range in thickness from a few mm or even dispersed volcanic glass fragments (crypto-tephra) to several metres, depending on the proximity to the volcanic centre and the wind direction at the time of the explosion. In volcanically active marine and oceanic basins, such as the Eastern Mediterranean, the tephra records are widely present in sediment corers and robust tephrostratigraphy (tephrochronology technique) has been established (e.g. Keller et al., 1978; Wulf et al., 2008). In seismic sections, they are usually strongly reflective because of the marked contrast between their physical properties and the sediments that surround them. They are then matched with their volcanic source by geochemical analysis of their volcanic glass. On a larger scale, submarine volcanic vents and fissures, and their lava and volcaniclastic deposits can be mapped by high-resolution bathymetry and backscatter imagery (e.g. Nomikou et al., 2013).

A specific approach is needed for submarine landslides. They are characterized by head-scars on the shelf edges and continental slopes, and their deposits are commonly termed mass transport deposits (MTD). MTDs constitute the past sedimentary record of submarine landslides, and can be imaged by seismic methods where they are characterized by transparent or chaotic inner seismic facies (Figure 5.3. and Grall et al., 2014)).
Figure 5.2. A sediment corer being shown at the cold storage repository at the Marine Station Ostend (MSO), managed by the Flanders Marine Institute.

Figure 5.3. A seismic section and its interpretation, showing a unit of mass transport deposits offshore New Zealand. The mass wasting event is characterized by deformed sediment units and internally chaotic reflections, obtained by seismic reflection data.
When exposed on the seafloor, MTDs are very well imaged by high-resolution bathymetry, which can define their character and distribution in great detail. Seafloor coring/drilling (and possibly in situ measurements of geotechnical properties) can then be used to characterize the sediment involved and define the factors they favour (presence of weak layers, i.e. with poor geotechnical properties, gas-hydrate dissociation, pore overpressure).

Different from faults that tend to always move along the same fault plane, landslides occur in the same area but not in exactly the same location. Therefore, for the definition of recurrence times, the detailed spatial mapping of features indicating instability has to be used as a proxy to obtain the temporal frequency of these instability events that formed them. This approach is based on the assumption that sedimentation tends to smooth through time and erase features that were produced by the instability events. Exceptions may exist due to low sedimentation rate or exhumation of these features (Minisini et al., 2006), but in general it is possible to assume that morphologies at the seafloor are rather recent events and therefore their number is proportional to their recurrence time in the area.

Considering the fact that landslides can also generate tsunami waves, even a small event such as a sudden failure occurring under specific conditions, e.g. in shallow water, in a densely populated areas or along coasts with dense infrastructure, may generate very high risk, as described in Box 2. Hence, there is an urgent need for new observation and monitoring techniques to identify and quantify soft sediment deformation and mass wasting (both as precursory indicators prior to the event, and as manifestations of previous events). These will be addressed in the next section.

5.2 Monitoring active processes and understanding their dynamics and mechanisms

The advance from studying and quantifying past events to monitoring active and ongoing processes transformed our understanding of geohazards. Combining the available technologies with a number of emerging strategies on how to go beyond the state-of-the-art in the near future, we summarize the main techniques, their challenges, and their potential, before trying to identify precursors to geohazards. The following sub-sections provide a summary of systems for hazard and process monitoring, and present advanced and emerging technology that will allow a multi-hazard approach for past and current events, especially when employing a combination of methods.

Marine geohazards monitoring and observation techniques require dedicated infrastructure and sensors that are able to withstand the challenging environmental conditions in the deep-sea. These include autonomous equipment, seafloor stations, networks or arrays of sensors, and sub-seafloor systems. All these sensors share the challenges of high pressure in deep water, limited energy supply and the need for precise navigation on the seafloor.

5.2.1 Repeated bathymetry surveys

Multibeam echo-sounder technology and the accuracy of positioning systems are constantly evolving and the use of autonomous and remotely operated systems for deep water investigations are growing. All these efforts allow the detection of rapid seafloor morphological changes with an unprecedented degree of resolution at any water depth. Seafloor changes are estimated by computing the difference between two co-registered digital elevation models generated from repeated multibeam echo-sounder surveys. The resulting ‘difference map’ quantifies the changes in elevation. The volumes associated with surface changes are obtained by integrating the difference in depth over the areas of interest. This approach has been used to detect and monitor co-seismic seafloor displacements (Fujiwara et al., 2017), volcanic eruptions (Caress et al., 2012; Bosman et al., 2014; Ercilla et al., 2021), landslides and their morphological evolution (Chiocci et al., 2008; Biscara et al., 2012; Casalbore et al., 2012; Kelner et al., 2016), submarine deltas (Hill et al., 2008; Clare et al., 2017), canyons (Guiastrennen-Faugas et al., 2020) and channels in fjords (Conway et al., 2012; Normandeau et al., 2014; Gales et al., 2019).

These data sets include repeated surveys performed over months to decades and are used to characterize specific phenomena (Figure 5.4.). By contrast, recently the most detailed time-lapse mapping of any marine system was realized for the Squamish pro-delta in British Columbia (Stacey et al., 2019). It consists of almost 100 daily bathymetric surveys performed over a period of 4 months, which detected more than 100 turbidity currents and assessed their control on the morphological evolution of the channels (Vendettuoli et al., 2019 and references therein).

The integration of repeated multibeam surveys with hydroacoustic monitoring has resulted in a powerful tool for the detection of active submarine volcanoes (especially given that volcanic eruptions only occasionally reach the sea surface) and to identify submarine eruptive processes (Somoza et al., 2017; Tepp et al., 2019).

5.2.2 Monitoring seafloor deformation

Seafloor geodesy

The rise of satellite-based monitoring and observation techniques is arguably one of the greatest breakthroughs in geosciences since the concept of plate tectonics. Space-based methods are routinely used in onshore hazard research to monitor active movement of tectonic plates, the movement of fault zones and plate boundaries as well as volcanic and fluid activity (e.g. Owen et al., 2000; Reilinger et al., 2006; Tong et al., 2010; Walter et al., 2019). However, this is not possible offshore, as electromagnetic waves used in satellite-based approaches cannot penetrate the water column.

Seafloor geodetic techniques (without connections to satellites) detect seafloor deformation and the corresponding small changes in length and volume associated by tectonic stresses with providing relative or absolute positioning information. This information is provided at the same high-resolution level than satellite-based approached on land (Figure 5.5.). Seafloor geodesy uses acoustics
to either detect relative seafloor deformation, or to transfer the seafloor position to the global reference frame (GPS-Acoustic or GPS-A) (Petersen et al., 2019). This is achieved by deploying seafloor nodes which can work autonomously for up to 10 years. Measurements of millimetre-level displacement across tectonic lineaments reveal the movement of active tectonic faults. Seafloor geodesy is also used for high-precision monitoring of potentially unstable volcanic flanks or continental slopes, as depicted in Figure 5.5. There, downslope movement increased from 2 cm/yr at the shore to 4 cm/yr offshore, indicating that flank deformation is intensifying offshore. Shoreline-crossing observations will yield the full spectrum of deformation, which may differ in the offshore domain compared to measurements on land.

Seafloor geodetic studies are still in their infancy and the integration of autonomous surface vehicles such as wave gliders to enable data transmission from the seafloor to the surface and then via satellite to land is crucial. Ocean-bottom pressure sensors should be linked to all acoustic geodesy installations. Installation of seafloor nodes, which can remain on the seafloor for decades offers the opportunity to re-visit these sites multiple times. Real-time or near-real time data transfer from seafloor geodesy networks is a prerequisite for early warning schemes in cabled or autonomous systems. In addition, standardized file and data formats will enhance data and knowledge transfer in the future in order to expand seafloor geodesy missions in Europe.

Fibre-optic technology

Fibre-optic technology is mostly used by telecommunications companies to transmit telephone signals, internet communication and television signals. It is also used for light guides, imaging tools, lasers, sonar, or hydrophones for detecting seismic waves (earthquakes). Recently, scientists have used fibre-optics with sensors in boreholes to monitor temperature, strain or seismology, to provide continuous temporal and spatial observations. Fibre-optic cables record seismic signals at a much higher density, comparable to placing a broadband seismometer every few metres. A recent application in marine geophysics supported by the Monterey Accelerated Research System (USA), recorded a minor earthquake and identified multiple submarine fault zones (Lindsey et al., 2019). The observations lasted just a few days, but allowed for the mapping of an unknown fault system and the detection of several dynamic processes in the water column above.
Figure 5.5. **Top:** Concept of a seafloor geodesy array with data upload via an autonomous surface vehicle (wave glider) and a satellite link. **Bottom:** Detection of a 4 cm movement downslope on the flank of Mount Etna in Sicily, see red circle on the graph.
Recently, optical fibres (OF) have been turned into seismo-acoustic sensors. The breakthrough came with the discovery that earthquakes can be detected by analysing the phase stability of state-of-the-art lasers across thousand-kilometre-long seafloor telecommunication cables (Marra et al., 2018). However, this approach provides only one measurement that is integrated over the entire length of the cable. Thus, Distributed Acoustic Sensing techniques (DAS, Figure 5.6) exploits the phase of light that is backscattered by the inherent irregularities of the silica fibre to provide densely spaced, high-rate measurements of strain. DAS provide high frequency (1 kHz) acoustic measurements with metric spacing, effectively turning OF cables into dense linear seismic arrays (Jousset et al., 2018). This effectively means that instead of one seismometer spaced every hundreds of meters or even kilometres apart, we now have a setup that is equivalent to having a seismometer every two meters, which renders much more detailed information of the subsurface. Sladen et al., (2019) demonstrated that regional seismicity (e.g. a Mw 1.9 micro-earthquake located 100 km away) can be monitored with signal characteristics comparable to those of a coastal seismic station.

Future developments call for the integration of sensors into undersea telecommunication cables. The SMART (Science Monitoring and Reliable Telecommunications) subsea cables initiative would combine these infrastructures to create a seafloor-based global ocean observing network (Howe et al., 2019). Enabling telecommunication cables on the seafloor to sense their environment could potentially reduce the time to detect earthquakes that may trigger a tsunami by approximately 20% (Tilmann et al., 2017).

Seismic imaging
Seismic imaging provides the most accurate information when analysing the geology below the seafloor and forms the basis of most marine geohazard studies. There is a trade-off between resolution and penetration. With seismic methods that can look 5 km below the seafloor, it is possible to resolve geological features of about 50 m, but with seismic methods that only penetrate the top 25 m, the resolution can be as high as 25 cm. Studies of slope stability typically employ seismic systems that image the top 1,000 m at 5 m resolution, while earthquake studies have to image the entire continental crust down to about 30 km. Modern systems are able to image the subsurface in three dimensions. Like in a medical CT-scan the entire subsurface is revealed and can be interrogated in all directions. This reveals the main tectonic structures, such as tectonic faults along which earthquakes occur (Figure 5.7 and Karstens & Berndt (2015)), and the deposits of past landslides, that provide information on which parts of the continental margins are unstable and how often landslides occur in a particular region.
There are two recent developments in seismic technology that have redefined the field of marine geohazard research. The first is the development of high-resolution 3D seismic capabilities available at only three European academic institutions, i.e. IFREMER, GEOMAR, and the University of Tromsø (Planke et al., 2009). If the issue of having the required equipment is solved, making this technique available to the wider community would boost European marine geohazard research (see EMB Position Paper 25 on Next Generation European Research Vessels for further information on sharing equipment and trans-national access (Nieuwejaar et al., 2020)). The second advance is IFREMER’s development of a deep-towed high-resolution seismic system, which can image the top 50 m below the seafloor at 25 cm resolution even in deep ocean basins (Ker et al., 2014). If these two technologies were combined into a deep-tow seismic system that could image the subsurface in three dimensions, it would lead to unprecedented insights into the geological processes that control geohazards. But developing a 3D-system to be towed at great water depth is technically challenging and would require a joint European effort.
5.2.3 Drilling the seafloor to understand geohazards at depth

Seafloor drilling devices

Robotic seafloor drills (Freudenthal & Wefer, 2013) are state-of-the-art remotely controlled devices that can drill up to 200 m into the seafloor. They can penetrate shallow fault zones, the detachment planes of submarine landslides, but also crustal rock or other strata can be penetrated by either push coring or rotary coring. A suite of logging tools exists to collect continuous records of petrophysical parameters. Samples can also be taken using an autoclave system, so gas hydrate-bearing sediment can be recovered at their in situ pressure and temperature. In addition, a suite of borehole observatories has been developed for the slim MeBo drillholes (Kopf et al., 2015, Figure 5.8.) to seal the borehole to the Ocean above, sample fluids, and to transfer data from the seafloor to the sea surface. Electrical conductivity probes (that measure salinity), hydrophones or a slim seismometer may be mounted to the drill, and multiple holes with such systems could monitor their relative distance and would be powerful in seafloor geodesy.

Figure 5.8. Top: Different MeBo drill rig bore hole observatories.
Bottom: Example of the formation pressure response of a MeBo observatory in Nankai (Japan) when two earthquakes in the near-field (see inset maps, MeBo instrument = green dots, earthquakes = red dots) stroke in May 2015. The Bonin Islands event has a larger magnitude and is also situated on the same subduction system, hence causing the stronger pressure anomaly.
Long-term borehole monitoring system (LTBMS)

Long-term borehole monitoring systems (Figure 5.9.), also known as CORK (Circulation Obviation Retrofit Kit), are state-of-the-art borehole observatories that seal the subsurface borehole from the ocean water body, allowing the in situ monitoring of deep-seated processes in the borehole. There have been numerous CORK designs over the past decades, which are described in Solomon et al., (2019) and references therein.

More recently, very complex long-term borehole monitoring systems (LTBMSs) were developed and deployed off Japan, comprising an array of sensors designed to monitor slow crustal and sediment deformation (Wallace et al., 2016). Pore pressure records from these monitoring systems can detect extensional and compressional sediment deformation before an earthquake occur. The configurations of these 100 m-long observatories include: (1) pressure ports, (2) volumetric strain-meters, (3) broadband seismometers, (4) tiltmeters, (5) three-component geophones, (6) three-component accelerometers, and (7) thermometer arrays. Unlike the CORKs, the LTBMSs can operate in self-contained mode but also as part of a powered, real-time seafloor cabled network, making them suitable for geohazard mitigation and early warning. Examples of the outcome of such research activities for earthquake assessment include the very precise location of earthquakes and associated seafloor movement offshore (Wallace et al., 2016), and the ultraprecise quantification of earthquake slip and tremors and how this relates to the plate kinematic stress accumulation and future risk (Araki et al., 2017).

5.2.4 Observing physical parameters governing geohazards

Ocean-Bottom Seismometers (OBS)

Ocean-Bottom Seismometers (OBS) are deployed on the seafloor to record acoustic and seismic events from natural and anthropogenic sources, such as earthquakes and tremors or human-made acoustic signals (Figure 5.10. and Kopp et al., 2011). Processing and analysing the data yields information on the type and location of the acoustic or seismic source, and the physical properties and geology of the sub-seafloor sediments, Earth crust and mantle. OBS may be equipped with geophones in addition to a hydrophone and require enough capacity to record wide-angle seismic profiles (Sallarès et al., 2013). OBS can operate for up to ~12 months for long-time autonomous monitoring. The instruments shown in Figure 5.10. are rated to 8 km water depth and are thus capable of being deployed in most oceanic regions.

Figure 5.9. **Left:** One of the payload bays on the LTBMS head showing ROV-operable valves that allow fluid sampling as well as pump tests in the formation at up to several 100 meters sub-seafloor depth. **Right:** Head of an LTBMS surrounded by the ROV landing platform that also hosts a data recorder when it is lowered into the moonpool of DV Chikyu.
Figure 5.10. **Top:** Ocean bottom seismometer being deployed.

Bottom: Geographical distribution (top) and cross section of the seismicity (bottom) along the Main Marmara Fault during the period 2007–2012. Different domains were identified (TB, CoB, KB, CB) based on the earthquake distribution (colored dots) and the dotted lines in the depth section show the estimated fault depth of each domain.
OBS will in future be integrated into submarine cabled real-time observation systems (Wallace et al., 2016), which are developed as earthquake monitoring and tsunami early warning systems that continuously stream data to shore, such as Japan’s fully operational DONET and S-net networks (Mulia & Satake, 2021). In the future low-cost and lightweight OBS will allow deployment of large number of instruments (several hundred per mission) to increase our observation and monitoring capabilities. Optimized power consumption will enable long-term autonomous deployments of sensors beyond the scope of what is possible today, with data transmission solutions via modem and satellite offering non-permanent links for data transfer.

Acceleration/pressure/temperature (APT) device

The APT (Accelerator, Pressure, Temperature, see Figure 5.11.) is a new seafloor device that monitors seafloor acceleration, pressure and temperature using established transducers in a very robust device (Davis et al., 2019). Similar to a CTD (conductivity [=salinity], temperature, depth [=pressure]), a set of key parameters is measured with an increased level of precision and in an affordable way. The APT is pushed into sediment or clamped into a borehole, providing extremely high resolution and accuracy due to its high-frequency period counter. Advantages include large dynamic ranges, high sensitivities and broad bandwidth. The APT monitors strong and weak seismic ground motion, tidal loading, and slow and rapid geodynamic deformation with a single tool.

Piezometer probes

Piezometer probes (Figure 5.12.) are devices designed to record formation pressure and temperature at the seafloor. Temperature variations at the seafloor are an indicator of fluid movement, and the formation pressure can be used as a proxy for strain and/or fluid flow. Piezometers and piezocone probes have been widely deployed in landslide research (Sultan et al., 2010, 2020; Stegmann et al., 2011). Numerous systems exist in the scientific community, with the modular devices developed by IFREMER being one of the most versatile. The sensing is done by individual modules that are connected by spacer rods, so that the depth

Figure 5.11. **Top left:** Photo of an acceleration, pressure, and temperature (APT) tool being tested in a salt water tank. **Top right:** An APT device being adjusted with the help of a Remotely Operated Vehicle (ROV) (see section 5.2.5). **Bottom:** Example of APT data (A) and a CORK borehole observatory data (B) in detecting a Mw 8.2 earthquake in Alaska, USA. The advantage of the small size APT devices is that the ultra-precise measurements mimics much larger and more expensive technologies, such as the CORK borehole observatory. In addition, these graphs demonstrate the value of using pressure data as a proxy for earthquakes/seismic waves in cases where only pressure observations exist (matching between the measurements of the seismic surface wave vertical ground acceleration (red curve) and the seafloor pressure (blue curve)).

14 http://www.jamstec.go.jp/donet/e/
How can science transform hazard assessment in Europe?

Figure 5.12. Left: Deployment of a piezometer probe. Right: Long-term pore pressure monitoring (1 year, 2007) in the 1979 Nice Airport Landslide area (colored lines). Each curve represents measurements from the same piezometer probe at different depth. The monthly precipitation rate measured at Nice Airport (light blue area) is shown for comparison. Weeks after heavy precipitation, the pore pressure increases (arrows) because the aquifer is then charged with water and causes submarine groundwater seepage in the shallow slope. If pore pressure exceeds the (shear) strength of the sediment, the slope could collapse again (see calculations in Stegmann et al., 2011). Precipitation data from HYDRO database, from Le Service Central d’Hydrométéorologie et d’Appui à la Prévision des Inondations.

Figure 5.13. Launch of penetrometer Penfeld.

below seafloor in which the measurement takes place is defined prior to the deployment. The systems are self-contained with battery packs and buoyancy for recovery. Future use of cabled systems in larger seafloor networks will allow a broader spatial coverage of measurements.

Pore Pressure Sensors

The Penfeld penetrometer (Figure 5.13.) is a seagoing cone penetrometer with pore pressure sensing (CPTu). It was developed by IFREMER and has recently been upgraded to explore sub-seafloor depths down to 50 m. The self-contained system uses a regular CPTu piezocone at the tip of 50 m-long coiled tubing, which is straightened before the probe is pushed to measure pore pressure in the upper sedimentary succession. Recently, the device was modified with a decoupling mechanism, which can deploy a coiled long-term instrument of up to 50 m length. The presence of coarse sediments is shown by high values of the tip resistance. Decrease from the corrected tip resistance, indicate probably a precursor to a future shear, a zone where potential landslide can occur (see Sultan et al., 2010). Once this system is in the ground, the string is decoupled and the Penfeld is retrieved. TIPS (Temperature, Inclination and Pressure Sensors) is one example of such a custom-built pore pressure sensor developed within the ANR MODAL project with the aim of identifying landslide precursors prior to failure events. TIPS is a modular in situ monitoring unit that measures pore pressure and temperature at different levels along a 50 m drive rod equipped with tilt sensors helping in accurately measuring tilt and inclination using accelerometers.
Permanent multidisciplinary seafloor observatories

Permanent seafloor observatories have been developed to complement the mobile sensors and equipment introduced above, which are commonly deployed only during research campaigns or for a limited period. Permanent observatories are platforms equipped with multiple sensors, placed along throughout the water column and on the seafloor to make recordings over a longer period of time. Depending on their target sites and attached sensors, seafloor observatories may have different configurations. They may be autonomous, acoustic or cabled.

Monitoring the seafloor using permanent observatories started in the 1990’s. In 1995, the Instituto Nazionale di Geofisica e Vulcanologia (INGV, Italy) was the first institution to start monitoring submarine infrastructures, to develop new technologies for long-term underwater observation (Favalli & Beranzoli, 2006). During the last two decades, many countries have started to establish multidisciplinary observatories and observatory networks. For example, in the north-east Pacific, Ocean Networks Canada (ONC) operates the cabled East Pacific Time-series Underwater Networked Experiments (NEPTUNE) to monitor seismic and volcanic activities. The Ocean Observatories Initiative (OOI) cabled array in the USA supports near-continuous geophysical monitoring of seismicity at the Cascadia margin and the Juan de Fuca and Gorda Ridges.

The European Multidisciplinary Seafloor and Water column Observatory (EMSO-ERIC) (Best et al., 2016), which consist of a system of regional facilities placed at key sites in the European seas16 (Figure 5.14.), constantly measure different biogeochemical and physical parameters relevant to marine geohazards. EMSO observatories include those installed on the Iberian Margin (Portugal/Spain); on the Porcupine Abyssal Plain in the North Atlantic, at a depth of 4840 m (operated by NOC, United Kingdom); at a depth of 3630 m off the Canary Islands (operated by PLOCAN, Spain); at a depth of 1700 m in the Hellenic Arc (operated by HCMR in Greece); and at a depth of 95 m in the Black Sea (operated by GeoEcoMar in Romania). EMSO-ERIC has also proposed the establishment of observatories in the Marmara Sea, a high-risk area with strong earthquakes, submarine landslides and tsunamis. Other observatories operate close to unstable margins, such as that off the coast of Norway, affected by numerous and recurrent submarine slides, that may damage offshore oil and gas installations, and generate tsunamis.

Globally, the United Nations Decade of Ocean Science for Sustainable Development (2021-2030) endorsed a programme called ‘One Ocean Network for Deep Observation’. This programme is proposing the development of deep-sea science observatories and survey technologies at various sites of the global ocean to help protect people from natural hazards, among other objectives.

Off the Azores Islands on the Mid-Atlantic Ridge, the MoMAR observatory17 operated by IFREMER-CNRS in France, continuously monitors volcanic, seismic and benthic faunal activity at the Lucky Strike hydrothermal field (1700 m depth), using an array of sensors and cameras. At 2100 m depth, the western Ionian Sea NEMO-SN18 multidisciplinary cabled observatory operated by INGV, INFN and CNR in Italy monitors offshore seismicity related to offshore faults and volcanic activity from Mount Etna (Sgroi et al., 2019).

The Ligurian Sea shallow cabled observatory is an example where physical and chemical parameters in the sub-seafloor are monitored in concert to identify landslide precursors and potential triggers. These include local seismicity (see OBS above), pore pressure and tilt (see piezometer and TIPS above), and also CTD (Conductivity − Temperature − Depth), and Radon and other radionuclides. The latter two measures serve to identify changes in the pore volume of the marine sediments that may cause ground failure or successive weakening as a result of leaching in groundwater-bearing sediments. Groundwater pulses from the Maritime Alps, and in particular snow melt events in spring that enhance signals from precipitation, have been documented to cause destabilization and landslides (Dan et al., 2007). As a result, recent studies use the KATERINA sensor, an autonomous in situ detection system for radioactivity, to measure radionuclide abundance as a proxy for groundwater seepage (Tsabaris et al., 2011). See also Section 5.3. on precursors where such measurements were used at times of prominent earthquakes (e.g. Tsunogai & Wakita, 1995).

5.2.5 Underwater vehicles

Remotely Operated Vehicles (ROV)

A ROV (Figure 5.15.) is a non-autonomous remotely operated underwater vehicle, operated by a crew on board a research vessel, that is controlled and powered using a customised telemetry, optical fibres for communication, and a high voltage cable for power and hydraulics (Barreyre et al., 2012). ROVs are a routine tool for monitoring and maintenance of offshore industrial infrastructure but they may also be used for scientific exploration. Most ROVs are equipped with high-definition still and video cameras and lights, and may include sonar systems (Dyment et al., 2018), robotic arms (multi-function hydraulic manipulators), and sampling devices (i.e. baskets for seafloor fauna, sediment/rock, and gas/liquid samplers).
Over the past decade, ROVs have included in situ instruments that can measure bottom water and sub-seafloor temperature (up to >400°C at hydrothermal vents), physical or biogeochemical parameters. They can also contain in situ mass spectrometers used to trace the (isotope) geochemistry of deep fluids, and special devices such as the ROV-drill to extract hard rock samples to provide ground-truth information. Future demand requires novel, more dedicated sensors and smart solutions, such as advanced control of ROVs using immersive displays, and robotic tasks, live footage from the deep sea (telepresence), or manipulator motion compensation for observatory work (e.g. underwater mate-able connections, valve manipulation, data download).

Figure 5.15. Top Left: IFREMER’s Remotely Operated Vehicle (ROV) Victor 6,000 being deployed from RV Pourquoi pas?
Top Right: ROV Quest 4,000 m operated by MARUM being launched from RV Sonne.
Bottom: The control room of ROV Zonnebloem from the Flanders Marine Institute.
Autonomous Underwater Vehicles (AUV)

An AUV is a robot capable of underwater missions without requiring constant input from an operator because of its battery-powered propulsion, pre-programmed mission planning and other AI-controlled functions. Most AUVs contain sonar systems to survey bathymetry and backscatter imaging of the seafloor at high spatial resolution, given their low altitude relative to the seafloor (Kwasnitschka et al., 2016). A variety of sensors can be attached to AUVs to measure the concentration of various elements, the absorption or reflection of light, and the presence of microscopic life. Examples include conductivity-temperature-depth sensors (CTDs) and pH sensors.

Figure 5.16. **Top:** The AUV ABYSS on RV Sonne II during the SO242/1 expedition. **Bottom:** High-resolution seafloor map showing a fault zone (white arrows) on the flank of Mount Etna. Bathymetry data were acquired with an AUV at a resolution of 0.05 m.
AUVs can be used as a fleet of robots: new multi-vehicle/multi-sensor/multi-ship systems (MVSS; see Figure 5.16.) augmented with remote sensing and data assimilation technologies, as well as with cloud-based planning and control software, will enable ocean observation with unprecedented adaptive spatial and temporal resolution. MVSS are particularly suited to find, track and sample physical, chemical and biological features at the sub-mesoscales (e.g. spills of hazardous materials), combining AUVs in the water column with ships or smaller Unmanned Surface Vehicles (USVs, e.g. wave gliders) for communication towards sea level, followed by satellite links. This is because the different vehicles, equipped with a variety of sensors, operating at nominal speeds over a long time can be dynamically combined to address different observation/scientific needs such as exploration, targeted sampling of geohazard precursors with specific sensors, or continuous coverage for these spatial-temporal scales. Autonomous vehicles will benefit from innovative algorithms (underwater decision-making, energy-efficient path planning, hibernation) and upgraded sensors (all the way to floating observatory level with smart transducers).

5.3 Recording and recognizing precursors to geohazards

Robust forecasting of marine geohazards involves expanding our knowledge of the drivers of the relevant physical processes behind geohazards, with a major focus on identifying, understanding and exploiting the build-up phase of these events. The identification of temporal variations and the last stages before a hazardous event is crucial. This information, when coupled with innovative data mining strategies (see EMB Future Science Brief 6 on Big Data in Marine Science for further information (Guidi et al., 2020)), will provide the potential to detect changes that deviate from the background signals (Pritchard et al., 2020). These results in turn can be combined with advanced modelling schemes (discussed in Section 5.4) to evaluate if such changes might indicate a forthcoming event (so-called precursors). Variations in the fluid chemistry, and in particular devolatilization processes, are very common, but have not yet been in the focus of geohazard research. The marine environment has several advantages for identifying e.g. potential earthquake precursors: (1) It is easier to hydrologically seal shallow boreholes in a fully saturated environment, so measuring pore pressure becomes straightforward once a hole is sealed. (2) Seafloor mud volcanoes are less sensitive to atmospheric changes or local disturbances than onshore mud domes (Martinelli et al., 1995). Thus, long-term seafloor monitoring may produce more stable data records and transient changes may be more significant and easier to detect. The marine environment is therefore the ideal test ground for techniques that can later be applied outside the Ocean.

Onshore, Radon (Figure 5.17.) is a powerful tracer because positive Radon anomalies are commonly (but not always) observed prior to earthquakes (Igarashi & Wakita, 1990; Martinelli et al., 1995; Kuo et al., 2009). Radon probes have been modified for (shallow) marine use (Tsabaris & Wakita, 2008), but studies in seismically active areas have not been performed yet. Similar to Radon, anomalies in subaqueous release of methane gas may occur pre-, co- or post-seismically through pockmarked areas on the shelf (Hasiotis et al., 1996) or in mud volcanoes (Kopf et al., 2010). However, data from continental slopes are rare, although ionic concentrations of some elements have been shown to vary in sub-seafloor pore waters. An example is observations from a borehole intersecting the frontal thrust in the Costa Rica subduction zone by Solomon et al., (2009), whose model suggests seismic fault slip events being the cause of variations of ionic Strontium, Magnesium, Lithium or Potassium. Onshore, similar fluctuations in ionic concentration have been observed in groundwater associated with the M_{w} 7.2 Kobe (Japan) earthquake (e.g. Tsunogai & Wakita, 1995), and the M_{w} 7.3 Chi-Chi (Taiwan) earthquake (Song et al., 2003).

![Figure 5.17. Examples of transient phenomena related to earthquakes.](https://www.example.com/figure5_17.png)

Left: Positive relationship between percentage of increasing surface latent heat flow and earthquake magnitude. **Right:** Radon has been known to increase in groundwater in the preceding months leading up to earthquakes (red dot in figure), as described by Igarashi et al., (1995).
The 2011 (Mw 9.1) Tohoku earthquake is one of the best-recorded seismic events, due to the dense sensor arrays offshore and onshore in Japan. Prior to the earthquake, a number of observations pointed to the possibility of a large seismic rupture in north-eastern Japan. However, due to the lack of interdisciplinary understanding of the hazard potential, the results from individual methods did not provide a consensus assessment of the hazard (Uchida & Bürgmann, 2021). Even though temporal variations along the plate boundary and enhanced seismic activity were documented prior to the event, this did not cause an alert, so the large-magnitude (Mw >8) earthquake was not considered in the official earthquake probabilities, and the initial tsunami warning far underestimated its true size (Hoshiba & Iwakiri, 2011). Although discrepancy in the plate coupling models derived from seismic and geodetic studies was recognized prior to the Tohoku event (Kanamori et al., 2007), the origin of the diverging values was not clear. At the time of the earthquake, mostly onshore measurements were used and the resolution of processes occurring far offshore was limited as the seafloor arrays were still lacking a critical number of stations. Consequently, based on the fact that Mw ~7.5 earthquakes occurred every ~30 years, the long-term forecast for the region suggested a 90% or larger probability of rupture by a moderate to large sized (Mw <8.5) earthquake.

The Mw 7.6 Izmit earthquake along the North Anatolian Fault in Turkey was preceded by a seismic signal originating from the hypocenter 44 minutes prior to the main shock (Bouchon et al., 2011). The signals consisted of a succession of repetitive seismic bursts, accelerating with time, and increased low-frequency seismic noise. These signals were interpreted to be due to a phase of slow slip occurring at the base of the brittle crust, with the slip accelerating slowly initially, and then rapidly in the 2 minutes preceding the earthquake. Precursory seismic activity prior to the Mw 9.1 Tohoku Earthquake was even more marked. The increasing seismic activity prior to the Tohoku main event culminated in a Mw 7.3 foreshock two days before the main event.

Precursory anomalies were identified from the unique data set that the Tohoku event provided. Small, repeating earthquakes (Mw ~4) and transient slow slip were observed prior to the earthquake, but ceased after the event, indicating that seismicity patterns change during a seismic cycle (Uchida & Bürgmann, 2021). The Tohoku earthquake greatly improved our understanding of earthquake dynamics because of the diverse networks and arrays of sensors placed on the island of Japan and its offshore domain. It has highlighted the multidisciplinary need to better link the observations from diverse fields (seismology, geodesy, geology, geomorphology, structural tectonics, forensic seismology) and recognize their significance, at least for intermediate-term earthquake forecasts and probabilities.

For cascading or cumulative hazards, the situation is more complex and challenging. A combination of space-borne and ground-based techniques resolved the cascade of precursors leading up to the 2018 sector collapse of Anak Krakatoa (Figure 5.18), an Ocean island volcano located between the islands of Java and Sumatra in Indonesia, which resulted in a fatal tsunami (Walter et al., 2019). Flank motion and increasing volcanic activity were detected prior to a small-sized earthquake that preceded the sector collapse by about 2 minutes. The flank collapse removed a significant portion of the island and its shallow volcanic magma reservoir, causing an explosive eruption and the associated landslide triggered the tsunami.

While the flank movement, anomalous degassing, thermal anomalies, and seismic activity were observed prior to the tsunami, they were considered individually and their significance as precursors to the complex cascade of events evolving at Anak Krakatoa over a period of months was not recognized. This lack of understanding of cascading hazards prevented an accurate prediction of the event, even though a volcano-induced tsunami was anticipated for Anak Krakatoa (see Section 2.2). The failure to correctly interpret the anomalous behaviour as precursor activities leading to a geohazard emphasizes the urgency to develop multi-hazard observation

![Figure 5.18. Schematic sequence of events leading to the hazard cascade during the 2018 flank collapse of Anak Krakatoa, Indonesia. Flank movement (indicated by the white arrow in the left panel) and volcanic eruptions (dark cloud in left panel) were precursors to the flank collapse, which may have been triggered by an earthquake (seismic signals). Mass movement during flank collapse generated a tsunami (central panel), which reached the adjacent shores within minutes and caused ~400 casualties. The events lead to a decapitation of the volcanic island (right panel), causing rapid erosion.](image-url)
capabilities and monitoring techniques to enable a shift from a single hazard perspective to a cascading hazard perspective, and to account for the specific complexity of a region or area, as discussed in Section 2.8.

Monitoring of active processes is crucial to understand their underlying dynamics and mechanisms and to enable us to recognize the significance of precursory signals. Laboratory and field observations show that the transition from slow build-up to its release in hazardous events occurs as a brief process in which the onset of deformation is accompanied by changes in material properties. These changes may occur not only over minutes and hours as thought a decade ago, but could also occur over time scales of years. For example, changes that lasted several years were observed preceding large earthquakes such as the 2011 Mw 9.1 Tohoku earthquake in Japan (Mavrommatis et al., 2014). The aim of identifying these changes is to distinguish between a geosystem in equilibrium from one approaching instability, thus triggering a hazardous event. This requires the development of the next generation of observation systems and techniques to transform our observing and monitoring capabilities and to advance our interpretation and modelling frameworks. It is necessary to quantify the thresholds and transitions towards instability and to improve our assessment of the hazard potential of threatened sites around Europe.

5.4 Defining hazard through numerical and physical modelling

Recently, the development of mathematical models for hazard definition, geotechnical measurements, data collection in the field and in laboratories, and event dating has gradually increased. These tools can be applied to understand the formation and the mechanisms of marine geohazards and their consequences, but also to develop warning systems prior to these disasters.

Tsunamis

To minimize the impact of a tsunami and to reduce the infrastructure destruction along the coast, understanding tsunami land inundation over the coastal areas is crucial. For that, numerical modelling is a powerful tool, and over the last few decades, numerical models have advanced rapidly due to improved numerical schemes and computational resources. Scenario-based modelling can provide information on potential inundation areas based on knowledge of the bathymetry and potential sources of tsunami. Physical tsunami models are used to better understand tsunami inundation in coastal areas (Bridges et al., 2011; Palermo et al., 2012; Kihara et al., 2015; Thomas et al., 2015; Prasetyo et al., 2016; Yasuda et al., 2016).

When tsunamigenic sources are well constrained and detailed bathymetric and coastal topography data are available, numerical models allow for accurate estimates of offshore tsunami propagation and inundation (Prasetyo et al., 2019). However, there are still limitations in data availability and the ability of current numerical schemes to reconstruct tsunami inundation and run-up associated with complex bathymetry and topography (Park et al., 2013; Pringle & Yoneyama, 2013; Miyashita et al., 2015; Adriano et al., 2016). Validation of the numerical models is challenging due to limitations in observational data, particularly for extreme tsunami events. This makes it challenging to constrain certainty in propagation and inundation.

Interaction between laboratory and numerical modelling communities is mutually beneficial and allows for the development of an iterative process using both techniques to test numerical models against data derived from the physical models. Scaled laboratory experiments allow us to observe and understand physical processes and test basic assumptions, and the numerical simulations can be used to quantify processes that are too complex, large, or long-lasting to be reproduced in the laboratory, making the approaches highly complementary.

Probabilistic tsunami hazard assessment (PTHA) is an approach used to quantify tsunami hazard. A PTHA combines all potential tsunamigenic sources that may affect a region to provide the probabilities that various tsunami heights might be exceeded. These analyses provide information on event probabilities and can therefore feed directly into risk management plans. PTHA was inspired by probabilistic seismic hazard assessment (PSHA) for earthquakes, and is currently a topic of intense research. Behrens et al., (2021) provide an elaborate overview of current state-of-the-art and research gaps in probabilistic tsunami hazard and risk assessment, summarizing the large uncertainties that arise from inadequate knowledge of the physics and geological complexity of the tsunamigenic sources, particularly those triggered by landslides and volcanoes. Furthermore, uncertainties propagate across disciplines assessing risks, where our understanding in the level of vulnerability and exposure to different hazards is still immature (Behrens et al., 2021). Basili et al., (2021) present a state-of-the-art PTHA for earthquake-generated tsunamis in the north-eastern Atlantic, the Mediterranean, and connected seas (NEAM), which underscores the importance of exploiting data from different scientific fields and disciplines (Figure 5.19.). Landslide-generated tsunamis will benefit from such a region-wide approach, as the source, size and possible generating mechanisms may be inferred from high-resolution bathymetry.

Tsunami early detection and warning systems (TEWS) have been operational in the Pacific since the late 1940s. These systems combine seismological monitoring with sea bottom pressure sensors (Deep-ocean Assessment and Reporting of Tsunami - DART Buoys) to detect, and later confirm, potentially tsunamigenic earthquakes in order to issue warnings to the threatened coastal areas. Following the 2004 Indian Ocean tsunami, there have been widespread efforts to develop tsunami warning and mitigation systems in several other regions, including the Indian Ocean (ICCG/ IOTWMS), the NEAM region (ICCG/NEAMTWSS) and the Caribbean. In addition to Ocean-wide systems, local warning systems are in place for tsunamis triggered by large rock avalanches. One such example is the Åkneset slope in Norway, which is threatening to fail and would thereby generate a massive tsunami that could wipe out settlements along the Storfjorden fjord system (Harbitz et al., 2014). Another example is the Stromboli Sciara del Fuoco in the southern Tyrrhenian Sea that experienced a landslide-generated tsunami in 2002.
Earthquakes

Similar to tsunamis, scenarios can be used to assess the ground shaking hazards of earthquakes, either probabilistically or deterministically. The probabilities and estimated motion of the ground can be fed into building regulations and used for planning purposes (Figure 5.20.).

Probabilistic seismic hazard assessment (PSHA) was developed in the 1960s (e.g. Cornell, 1968), and although the tools and methods have been improved recently, the basic concepts and assumptions remain the same. In a PSHA, all potential earthquake sources that could affect a given area are considered with their individual earthquake magnitude-frequency distribution (the relationship between the magnitude and frequency of the earthquakes is inverse, i.e. low magnitude earthquakes are more frequent). Combining this information with ground motion prediction models, in which earthquake ground shaking is given as a function of distance, magnitude and potentially other source parameters, provides an estimation of the probability of various levels of ground shaking at a given location.

In a deterministic model, the source of the earthquake is assumed, e.g. a ‘worst-case’ or ‘most likely’ event, and the corresponding ground shaking is calculated. Such models have been developed for a wide range of scenarios using both fairly simple 1D stochastic models (e.g. Atkinson & Assatourians, 2015) and much more complex 3D numerical models (e.g. Chaljub et al., 2010).

Submarine landslides

Predicting the generation, propagation and trigger of tsunami waves can help to reduce the losses caused by submarine landslides. This is done by providing an estimate of the threatened areas and the intensity of the hazard, allowing for the design of appropriate protective measures. Marine models are fundamental tools to assess the direct and indirect (tsunami-related) hazards to offshore and coastal human settlements and infrastructures caused by submarine- and/or coastal landslides. Modelling is fundamental in the assessment of the stability of submerged slopes, where catastrophic failure or significant deformation can damage inhabited areas or infrastructures on the slope itself, and in propagation areas (e.g. Zhu & Randolph, 2010). In the case of medium to large failures, propagation of tsunami waves generated by landslides can be simulated with numerical models to predict the distribution of wave height and run-up in the surrounding areas.

In the last two decades, models have been significantly improved by the development of large-strain stress numerical techniques for the analysis of triggering and propagation stages (large-strain finite element analyses or the material point method; Dey et al., 2016; Soga et al., 2016); the application of smoothed particle hydrodynamics (SPH) techniques to analyse the runout of the tsunami wave; the development of models for gas-hydrate sediments (Sultan & Garziglia, 2011); models of sediment shear band theories (e.g. Zhang et al., 2020); and the assessment of the effect of seismic/cyclic loading on the slope failure in homogeneous sediments or with weak soil horizons.
A lack of geotechnical data hampers the prediction power of submarine slope models. Although the reconstruction of morphological features and seismic stratigraphy through geophysical investigations is detailed and covers large areas, it does not provide all the input data needed by the models used for hazard assessments. Thus, substantial effort is needed to collect experimental data both in situ and in the laboratory, on the mechanical behaviour of sediments, pore pressure regime and sub-bottom structural and geological features of slopes that can control the slope behaviour under static and seismic/cyclic loading (e.g. in the presence of gas-hydrates). The collection of such data is only possible if both offshore and in situ facilities in near seafloor conditions are available to European research institutions.

At present, the three main methods to investigate submarine landslides and the associated landslide-generated waves are laboratory experiments, analytical solutions and numerical modelling. Ideally, these should be used in combination: analytical solutions are only appropriate for simple cases; laboratory experiments represent the most straightforward way to study the landslides and their induced waves, but provide challenges in terms of scaling of the problem; and scaled physical experiments can be both time-consuming and costly. By contrast, numerical models, if properly validated with laboratory experiments or observed data, are a more flexible and efficient tool, which can easily provide flow variables at any point in space and are therefore better for a detailed study of the underlying physical processes.

Heidarzadeh et al., (2014) provided an excellent review of the state-of-the-art numerical tools used for modeling landslide-generated waves. They divided the landslide tsunami models into: (1) models treating the moving mass as a fluid (Kawamata et al., 2005); (2) models estimating the initial water surface (Lynett & Liu, 2002); and (3) models fed by transient seafloor deformation (Lynett et al., 2002; Satake, 2012). The selection of a particular model depends on the dimensions of the source, the available computing capacities, the availability of a fine bathymetric grid, and the purpose of the models.

Volcanoes

The hazard impacts of volcanic processes cover a diversity of phenomena, ranging from magma eruptions, to lava balloons on the sea surface, to ash dispersal in the stratosphere. Given the scope of the potential impact on society and the Blue Economy, a multidisciplinary approach is crucial for modelling volcanoes. Integrating scaled laboratory experiments (such as building of scaled models with analogue materials) with numerical simulations allows systematic evaluation of the model outcomes, which then need to be tested against observations and measurements.

As our understanding of the physical processes in volcanology is evolving, the conceptual modelling framework needs to be adapted to include new insights (Kavanagh et al., 2018). Model boundary conditions are based on diverse data sources, including geophysics, geochemistry and petrology, in combination with input from fluid dynamics, engineering or material science. Advancements in technological observation capacities, such as drones or autonomous systems, coupled with increasing data resolution, especially in geochronology, are advancing the modelling abilities in volcanology and will allow the quantification of complex physical processes and their impact on hazard assessment.
BOX 5: GRAND CHALLENGES IN MARINE GEOHAZARD SCIENCE

1. A thorough characterization of past geohazard events and an assessment of their frequency has to feed into a census of geohazard features and manifestations in European seas. This is the only feasible pathway to provide a better database on the recurrence of certain events and to gather crucial data for probabilistic risk assessment, e.g. for reinsurance companies and other stakeholders, which in turn will be of broad societal benefit, in particular in settlements close to the coast.

2. Monitoring of active geodynamic processes and the understanding of the underlying mechanisms is expensive. It requires both designated natural marine geohazard laboratories, and national and overarching integrated European efforts such as European deep-sea monitoring infrastructures. These efforts will enable permanent geophysical monitoring of the seafloor to expand submarine observatory arrays to multi-scale, multi-method surveillance. A transformative multi-hazard assessment will provide better management of present-day risks such as slope movements, sub-seafloor fluid flow, and other destabilizing factors with tsunami potential, and is important for protecting coastal communities and their infrastructures and hence, the EU Blue Economy.

3. One key aspect in geohazard research is time, i.e. at what stage can a certain event or risk unambiguously be identified. Consequently, innovative technologies (including artificial intelligence, smart sensors, etc.) are required to record and recognize precursors to significant geohazard events. The reliability, integrity and coverage of early warning networks based on seismological, geotechnical and other emerging methods is key. This will result in increasing warning times and improved forecast quality, specifically focused on tsunamis. We have to deliver the capability to effectively warn coastal societies and protect these communities, their infrastructure (ports, harbours, buildings, energy and aquaculture platforms, etc.), as well as the ecosystems and their services.

4. Apart from the (mostly) geophysical approaches in geohazard monitoring, one key aspect in a changing climate is the potential link to how climate change may enhance geohazards, e.g. by changing ocean temperature and currents, causing more abundant storm events (and associated run-off, sediment remobilization, etc.), groundwater charging, etc. Questions remain regarding whether we can identify (and quantify) a climate-induced increase in natural hazards and potentially geohazards, and whether the probability of their occurrence could be modelled. Specifically, to model geological processes, larger time-scales are needed for both hindcast and predictive models. Modelling past tsunami wave propagation, wave height and inundation, and landslide reconstruction have been successful. In the future, machine learning approaches using (big) data from these past events and present-day processes will be able to provide knowledge on geohazards, future mitigation measures and resilience. The momentum gained from digitization due to the COVID-19 pandemic and other recent advances should be used to this end.
6

Recommendations
Marine geohazards are a serious threat to European communities and infrastructure both on the coast and offshore. Such events can have far-reaching effects on the Blue Economy and on our closely interwoven societies in Europe. Europe’s increasing reliance on high-technology industry, including the exponential increase in offshore infrastructure for renewable energy, communication and resource extraction raises our vulnerability to marine geohazards.

In view of future destructive events due to marine geohazards, we need to enhance our understanding of the processes that trigger marine geohazards, advance our ability to assess and forecast these hazards, and transfer this scientific knowledge to practical mitigation actions, in order to augment society’s resilience.

It is therefore essential to prepare public authorities that manage coastal and marine areas, and the communities that live there (Section 6.1). This requires improved understanding of where and why marine geohazards occur, in order to provide the basic knowledge needed to forecast and assess hazards and provide it to civil protection in a timely manner (Section 6.2).

6.1 Advancing hazard mitigation for policy making and the Blue Economy

1. Increase awareness of marine geohazards among public authorities and communities. For safe and sustainable use of the seafloor, public authorities and policymakers responsible for coastal and maritime management and planning need to be aware of the significance of marine geohazards. National and local public bodies responsible for coastal communities and infrastructures are well aware of land-based natural hazards, but the potential of offshore threats remain mostly unknown. The reasons for this lack of attention are: 1) technologies to highlight the marine geohazard features are relatively new; and 2) up to a decade ago, the use of the seafloor was limited and there was little need to manage submerged territories. Similarly, public awareness of natural marine hazards is often low, even though the two very large tsunamis that hit Asia in 2004 (Indonesia) and 2011 (Japan), demonstrated how real marine geohazards can be and that they are not ‘a thing from the past’.

We recommend that marine geohazards are included as natural hazards in all policies relating to risk mitigation and land management, at European, regional, national and local levels.

2. Address marine geohazards in administrative management rules. A specific obstacle in managing marine geohazards is the lack of an appropriate policy framework in which to frame them. Because of the novelty of the tools to detect and quantify marine geohazards, national- and EU-level legislation is often poorly defined. Local agencies in charge of land management should be required to transform scientific knowledge acquired on marine geohazards into regulatory guidelines or restrictions to be applied, and co-develop with Civil Protection Agencies (or other similar) actions to be taken in case of emergency (see Box 4).

We recommend that marine geohazards are considered in local, national and EU legislation such as the EU Maritime Spatial Planning Directive, legislation pertaining to Integrated Coastal Zone Management, and that pertaining to the safe development of the Sustainable Blue Economy.

3. Require industrial technology to be available for marine geohazard research. The technological advancement in offshore energy production and data transfer will allow more infrastructure to be placed on the seafloor. If these infrastructures were equipped with sensors they would offer a unique opportunity to have real-time in situ measurements. The SMART cables initiative described in Chapter 5 is a good start but any powered industrial offshore installation that can transmit data could be used as a monitoring tool if required to do so by legislation.

We recommend that public authorities require all seafloor infrastructure installations to also be used for environmental and geohazards monitoring.

4. Model the potential impact of marine geohazards that could be quantified using hazard maps or risk models to set up early warning and rapid response systems. Marine geohazards are usually treated as individual hazards, monitored separately, and assessment without considering other phenomena that can trigger, or be triggered by, marine geohazards. It is therefore crucial to consider the cascading effect of marine geohazards (Chapter 2) that may significantly amplify the risk. For instance, seismic hazard assessment should include the possibility of tsunamis generated by submarine landslides triggered by ground shaking, as such effects may be comparable or even higher than the earthquake itself (Chapter 3).

We recommend that all major coastal settlements and industrial infrastructures develop probabilistic scenarios of marine geohazard risks.

5. Enhance scientific research on marine geohazards at all levels (infrastructure development, technological advancement, knowledge transfer) and stimulate education and public outreach on the understanding of the processes, impacts and consequences of marine geohazards. A stakeholder forum is needed to enable a sustained dialogue between the research community and stakeholders. This is necessary to inform all stakeholders about the breadth of marine hazards that have to be taken into account and communicate new research results. It would also allow stakeholders to communicate their knowledge needs and experience to the scientific community to generate the crucial research that is required for policy development.

We recommend that a stakeholder forum be established to identify knowledge gaps and technological needs. This could be achieved through the development of specific EU research programs on marine geohazards.
6.2 Science needed to understand processes, triggers and precursors

1. Designate natural laboratories for marine geohazards, i.e. areas with a seismogenic fault, a flank of an active volcano, or a submarine slope prone to failure (Chapter 3), either for individual hazards or in a multi-hazard strategy. Funding opportunities need to be set up to focus the activities of EU researchers in these natural laboratories by using different approaches, technologies, methods and data. The aim is to equip natural laboratories with (submarine) observatory networks similar to that achieved on land (geodesy, seismology, geochemistry, etc.). High-density geodetic measurements acquired onshore were instrumental in understanding fault dynamics, seismic hazards and the dynamics of landslides, and will be equally transformative at sea to identify chemical, physical, or morphological precursors of geohazard events (Chapter 5). Data produced by observatories and by research groups focusing on these natural laboratories should be fully compliant with open data policy to provide comprehensive data sets available to the scientific community and stakeholders.

We recommend that a field laboratory for marine geohazards should be set up at a focus site in Europe to concentrate research, facilities and in situ modelling.

2. Promote a census of geohazard features in European seas, using homogeneous data acquisition and interpretation standards. The volume of morpho-bathymetric data already available is very large and will increase exponentially in the near future (e.g. Seabed 2030). Implementing homogeneous standards for geohazard feature identification, interpretation and cartographic representation will ensure a pan-European approach for the investigation. It will also ensure the safe use of the seafloor and promote economic activities that will use this database for desktop studies. Full coverage maps of marine geohazards in Europe exist only for earthquakes and tsunamis (Chapter 3) as they are derived from land-based instrumental networks or models. No homogeneous and full-coverage maps of landslides, seismogenic faults, fluid escapes or active volcanic features exist for European seas. On land, such maps are the primary tool for geohazard assessment and this needs to be expanded offshore.

We recommend that a common standard for marine geohazard interpretation and mapping be promoted to ensure the safe development of the Blue Economy.

3. Integrate EU marine monitoring infrastructures such as EMSO (European Multidisciplinary Seafloor and Water-Column Observatory) and all other long-term monitoring of high-risk areas with seafloor mapping and geohazard research. Permanent seafloor observatories continuously collect environmental data in a fixed position, while seafloor mapping of geohazard features will provide data continuous in space but collected at one specific time (Chapter 5). As seismic, acoustic and chemical signals in the deep sea can travel for tens of kilometres, a comparison between detailed maps of geohazard features and the signals from observatories will allow us to understand the evolution of geohazard phenomena such as mass wasting, volcanic eruption, activity at faults and of gravity flows through time, and possibly define precursors.

We recommend that long-term in situ monitoring be combined with geohazard studies in the surrounding region to identify long-range signals.

4. Promote innovative technologies to conceive and realize novel sensors and new methods to study submarine geohazards and their precursory signals, including through collaborative research with industry. The increase in performance (e.g. reduced power consumption) or the decrease in size and cost of existing sensors should also be promoted. Develop a new generation of models to help interpret and provide robust and innovative methods for long-term hazard assessments and short-term forecasting of marine geohazards. This approach needs to cover all time scales, from seconds to hours (landslides, earthquakes, tsunamis), days to years (volcanic eruptions, migrating bedforms, fluid activities), and years to millions of years (e.g. seafloor deformation) (Chapter 3).

We recommend that technological advancement be supported in order to improve the detection capability and availability of sensors.

5. Data mining, virtual access and AI. Advances in digitalization, open data and implementation of interpretative standards will allow European researchers to virtually access data, while data interoperability may facilitate the interface between data acquisition systems and databases with high-performance computing platforms dedicated to data mining and model assimilation. These activities will be underpinned by exploiting advances in artificial intelligence (AI) and big data science and are essential to fully harvest the growing volumes of marine data.

We recommend that holistic databases of raw data and homogeneous interpretations be created and made available to the scientific community to apply advanced techniques in support of marine geohazard studies.
References

REFERENCES

Glossary

Accelerometer – Tool that measures proper acceleration

Antidune – Bedform found in fluvial environments, opposing the direction of flow

Autoclave system – Device used to keep the sediment samples under the same in situ pressure

Biostratigraphy methods – Branch of stratigraphy that uses fossils to establish relative ages of rock

Brittle stretching – Deformation by fracturing on the scale of individual mineral grains or larger

Caldera – Large depression formed when a volcano erupts and collapses

Cyclic steps – Rhythmic bedforms associated with flow instability

Decompression melting – Rock melting when it gets closer to the surface due to pressure decrease

Degassing – Removal of dissolved gases from liquids, especially water

Deltaic sediments / deposits – Accumulation of material in deltas

Deterministic model – Model providing the same exact results for a particular set of inputs

Devolatilization process – Decomposition when volatiles are driven out from a hydrocarbon material

Diagenesis – Physical and chemical changes in sediments caused by water-rock interactions, microbial activity, and compaction after their deposition

Diatremes – Volcanic pipe formed by a gaseous explosion

Drill-hole corers – Drill specifically designed to remove a cylinder of material

Epicontinental sea – Shallow sea that covers central areas of continents during periods of high sea level

Exhumation – Exposure of a land surface that was formerly buried

Fault – Fracture or zone of fractures between two blocks of rock

Finite element analysis – Computerized method for predicting how a product reacts to real-world physical effects

Gas-hydrate dissociation – Separation between the ice and gas when pressure-temperature conditions are outside the hydrate stability region

Geodesy – Science of accurately measuring and understanding Earth’s geometric shape, orientation in space and gravitational field

Geodetic – Of, relating to, or determined by geodesy

Geophone – Device that converts ground movement (velocity) into voltage, recorded at a recording station

Geodynamic process – Processes by which mantle convection shapes and reshapes the Earth

Glaciogenic – Sediments with origin laid down within or under glacier ice or deposited by an ice sheet

Gravity flow – Mixture of water and sediment where the gravity acting on the sediment particles moves the fluid, in contrast to rivers, where the fluid moves the particles
Hypocenter – Point of origin of an earthquake
Lithological – Physical description of a rock or rock formation
Littoral – Relating to or situated on the shore of the sea
Magma – Hot fluid or semi-fluid material below or within the earth’s crust
Material point method – Numerical technique used to simulate the behavior of solids, liquids or gases
Megaturbidite – Thick, extensive sediment deposit from an exceptionally large mass flow
Morpho-bathymetric – Related to identification and mapping of the seafloor
Morphological – Relating to the form or structure of things
Morphology – Study of the forms or structures of things
Multibeam systems – Multibeam echosounder which emit acoustic waves in a fan shape
Optically stimulated luminescence – Dating technique used to date the last time a quartz sediment was exposed to light
Orographic – Relating to mountains, especially as regards their position and form
Overpressure – Pressure caused by a shock wave over and above normal atmospheric pressure
Over-steepened flanks – Sharp inclination of the side of a construction prone to fail
Oxygen isotope methods – Determining patterns of climatic change using the ratio of the stable oxygen isotopes 18O to 16O
Paleomagnetic – Relative to the study of the record of the Earth’s magnetic field
Penetrometer – Device to test the strength of a material
Petrophysical – Relative to the study of physical and chemical rock properties and their interactions with fluids
Phreatomagmatic eruption – Volcanic eruptions resulting from interaction between magma and water
Pore overpressure – Difference between the internal fluid pressures of a rock’s pore space and the hydrostatic or normal pressure
Precursor – Smaller event that usually precedes a larger event
Probabilistic model – Model based on the fact that randomness plays a role in predicting future events
Propagation – Movement of a wave through a medium
Radiocarbon dating – Method for determining the age of an object containing organic material by using a radioactive isotope of carbon
Refraction – Change in direction of a wave caused by its change in speed
Retrogressive evolution – Upslope-propagating erosion wave
Sediment corer – Instrument taking undisturbed samples of the seafloor
Sedimentary successions – Vertical sequence of sedimented facies
Seismic – of, subject to, or caused by an earthquake or an earth vibration caused by something else
Seismic facies – Body of rock with specified characteristics in a seismic profile

Seismic imaging – Set of methods to obtain images of the Earth using observed seismograms as inputs

Seismic reflection profiling – Studies of the crust and upper mantle down to depths of 15 km to 100 km

Seismicity – Occurrence or frequency of earthquakes in a region

Seismogenic – Capable of generating earthquakes

Seismoturbidites – Thick, extensive sediment deposit from an exceptionally gravity flow triggered by earthquakes

Serpentinization – Processes whereby water is added into the crystal structure of the minerals

Shear zone – Structural discontinuity surface in the Earth’s crust and upper mantle

Shoreline-crossing – Cross-section taken perpendicular to a given coast line contour

Slip rate – How fast the two sides of a fault are slipping relative to one another

Strain – Change in shape or size resulting from applied forces (deformation)

Stratigraphy – Study of rock layers (strata) and layering (stratification)

Subaerial – Under the air

Swath bathymetry – Method providing very high angular resolution and accuracy

Tectonic lineaments – Linear feature expressing a fault

Tephra – All the fragmental material erupted explosively from a volcano

Tephrochronological techniques – Technique that uses discrete layers of tephrato create a chronological framework

Thermoluminescence techniques – Technique using the light emitted by a mineral while heated

Tiltmeters – Sensitive inclinometer designed to measure very small changes from the vertical level

Tsunamigenic – Capable of generating tsunamis

Transient – That has a duration shorter than the recurrence interval of the process that formed it

Turbidite – Geologic deposit of a turbidity current

Turbidity currents – Rapid, downhill flow of water caused by increased density due to high amounts of sediment

Unconsolidated sediments – Sediment that is loosely arranged or unstratified (not in layers) or whose particles are not cemented together (soft rock)

Volcanic edifice – Main portion of a volcano built by volcanic deposits

Volcaniclastic – Geologic materials composed of broken fragments (clasts) of volcanic rock

Volumetric strain-meters – Instrument that detects changes in a volume filled with fluid
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>ANR</td>
<td>Agence Nationale de la Recherche, France</td>
</tr>
<tr>
<td>APT</td>
<td>Accelerator, Pressure, Temperature</td>
</tr>
<tr>
<td>AUV</td>
<td>Autonomous Underwater Vehicle</td>
</tr>
<tr>
<td>BCE</td>
<td>Before Common Era, also known as BC or Before Christ</td>
</tr>
<tr>
<td>CE</td>
<td>Common Era, also known as AD or Anno Domini</td>
</tr>
<tr>
<td>CNRS</td>
<td>Centre National de la Recherche Scientifique, France</td>
</tr>
<tr>
<td>CORK</td>
<td>Circulation Obviation Retrofit Kit</td>
</tr>
<tr>
<td>CPTu</td>
<td>Pore Pressure Sensing unit</td>
</tr>
<tr>
<td>CRED</td>
<td>Centre for Research on the Epidemiology of Disasters</td>
</tr>
<tr>
<td>CTD</td>
<td>Conductivity [=salinity], Temperature, Depth [=pressure]</td>
</tr>
<tr>
<td>DAS</td>
<td>Distributed Acoustic Sensing</td>
</tr>
<tr>
<td>DONET</td>
<td>Dense Ocean floor Network System for Earthquakes and Tsunamis</td>
</tr>
<tr>
<td>DTM</td>
<td>EMODnet Digital Bathymetry</td>
</tr>
<tr>
<td>EMODnet</td>
<td>European Marine Observation and Data Network</td>
</tr>
<tr>
<td>EMSO-ERIC</td>
<td>European Multidisciplinary Seafloor and Water Column Observatory</td>
</tr>
<tr>
<td>GeoEcoMar</td>
<td>Institutul Național de Cercetare – Dezvoltare pentru Geologie și Geoecologie Marină, România</td>
</tr>
<tr>
<td>GHSZ</td>
<td>Gas Hydrate Stability Zone</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GPS-A</td>
<td>Global Positioning System – Acoustic</td>
</tr>
<tr>
<td>HCMR</td>
<td>Hellenic Centre for Marine Research, Greece</td>
</tr>
<tr>
<td>ICG</td>
<td>Intergovernmental Coordination Group</td>
</tr>
<tr>
<td>ICM-CSIC</td>
<td>Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas, Spain</td>
</tr>
<tr>
<td>ICZM</td>
<td>Integrated Coastal Zone Management</td>
</tr>
<tr>
<td>IEO</td>
<td>Instituto Espanol de Oceanografia, Spain</td>
</tr>
<tr>
<td>IFREMER</td>
<td>Institut Français de Recherche pour l’Exploitation de la Mer, France</td>
</tr>
<tr>
<td>INFN</td>
<td>Istituto Nazionale Fisica Nucleare, Italy</td>
</tr>
<tr>
<td>INGV</td>
<td>Istituto Nazionale di Geofisica e Vulcanologia, Italy</td>
</tr>
<tr>
<td>IOTWMS</td>
<td>Indian Ocean Tsunami Warning and Mitigation System</td>
</tr>
<tr>
<td>LNEC</td>
<td>Laboratório Nacional de Engenharia Civil, Portugal</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquefied Natural Gas</td>
</tr>
<tr>
<td>LTBMS</td>
<td>Long-Term Borehole Monitoring System</td>
</tr>
<tr>
<td>MaGIC</td>
<td>Marine Geohazards along the Italian Coasts</td>
</tr>
<tr>
<td>MARUM</td>
<td>Zentrum für Marine Umweltwissenschaften, Germany</td>
</tr>
<tr>
<td>MeBo</td>
<td>Seafloor robotic drilling device used by MARUM</td>
</tr>
<tr>
<td>MODAL</td>
<td>MOnitoring seafloor Deformation and Assessing Landslide hazards associated with fluid pressures</td>
</tr>
<tr>
<td>MoMAR</td>
<td>Monitoring the Mid-Atlantic Ridge</td>
</tr>
<tr>
<td>MSP</td>
<td>Maritime Spatial Planning</td>
</tr>
<tr>
<td>MTD</td>
<td>Mass transport deposits</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MVSS</td>
<td>Multi-vehicle/multi-sensor/multi-ship systems</td>
</tr>
<tr>
<td>NEAM</td>
<td>North-Eastern Atlantic, the Mediterranean, and connected seas</td>
</tr>
<tr>
<td>NEAMTWS</td>
<td>North-eastern Atlantic, Mediterranean and Connected Seas Tsunami Warning and Mitigation System</td>
</tr>
<tr>
<td>NEMO-SN1</td>
<td>Seafloor multidisciplinary observatory at the East of Sicily, Italy</td>
</tr>
<tr>
<td>NEPTUNE</td>
<td>East Pacific Time-series Underwater Networked Experiments</td>
</tr>
<tr>
<td>NOC</td>
<td>National Oceanography Centre, UK</td>
</tr>
<tr>
<td>OBS</td>
<td>Ocean-Bottom Seismometers</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>OF</td>
<td>Optical Fibres</td>
</tr>
<tr>
<td>OGS</td>
<td>Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Italy</td>
</tr>
<tr>
<td>ONC</td>
<td>Ocean Networks Canada</td>
</tr>
<tr>
<td>OOI</td>
<td>Ocean Observatories Initiative</td>
</tr>
<tr>
<td>PLOCAN</td>
<td>Plataforma Oceánica de Canarias, Spain</td>
</tr>
<tr>
<td>PSHA</td>
<td>Probabilistic Seismic Hazard Assessment</td>
</tr>
<tr>
<td>PTHA</td>
<td>Probabilistic Tsunami Hazard Assessment</td>
</tr>
<tr>
<td>QAFI</td>
<td>Spanish Quaternary Faults of Iberia</td>
</tr>
<tr>
<td>ROV</td>
<td>Remotely Operated Vehicle</td>
</tr>
<tr>
<td>SMART</td>
<td>Science Monitoring and Reliable Telecommunications</td>
</tr>
<tr>
<td>SPH</td>
<td>Smoothed Particle Hydrodynamics</td>
</tr>
<tr>
<td>TEPCO</td>
<td>Tokyo Electric Power Company</td>
</tr>
<tr>
<td>TEWS</td>
<td>Tsunami Early detection and Warning Systems</td>
</tr>
<tr>
<td>TIPS</td>
<td>Temperature, Inclination and Pressure Sensors</td>
</tr>
<tr>
<td>TSUMAPS-NEAM</td>
<td>Probabilistic TSUnami Hazard MAPS for the NEAM Region (TSUMAPS-NEAM)</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNDRR</td>
<td>United Nations Office for Disaster Risk Reduction</td>
</tr>
<tr>
<td>UNISDR</td>
<td>Former abbreviation for the United Nations Office for Disaster Risk Reduction</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>USV</td>
<td>Unmanned surface vehicles</td>
</tr>
<tr>
<td>VLIZ</td>
<td>Vlaams Instituut voor de Zee, Belgium</td>
</tr>
</tbody>
</table>
Annex 1: Members of the European Marine Board Working Group on Marine Geohazards

<table>
<thead>
<tr>
<th>NAME</th>
<th>INSTITUTION</th>
<th>COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heidrun Kopp</td>
<td>GEOMAR Helmholtz Centre for Ocean Research Kiel</td>
<td>Germany</td>
</tr>
<tr>
<td>Francesco Latino Chiocci</td>
<td>University of Rome ‘Sapienza’</td>
<td>Italy</td>
</tr>
<tr>
<td>CONTRIBUTING AUTHORS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Christian Berndt</td>
<td>GEOMAR Helmholtz Centre for Ocean Research Kiel</td>
<td>Germany</td>
</tr>
<tr>
<td>Namık Çağatay</td>
<td>Istanbul Technical University</td>
<td>Turkey</td>
</tr>
<tr>
<td>Teresa Ferreira</td>
<td>University of the Azores</td>
<td>Portugal</td>
</tr>
<tr>
<td>Juana Fortes</td>
<td>LNEC - National Laboratory for Civil Engineering</td>
<td>Portugal</td>
</tr>
<tr>
<td>Eulàlia Gracia</td>
<td>ICM-CSIC - Institute of Marine Sciences, CSIC</td>
<td>Spain</td>
</tr>
<tr>
<td>Alba González Vega</td>
<td>IEO - Spanish Institute of Oceanography & EMB Young Ambassador</td>
<td>Spain</td>
</tr>
<tr>
<td>Achim Kopf</td>
<td>MARUM – Center for Marine Environmental Sciences,</td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td>University of Bremen</td>
<td></td>
</tr>
<tr>
<td>Mathilde Sørensen</td>
<td>University of Bergen</td>
<td>Norway</td>
</tr>
<tr>
<td>Nabil Sultan</td>
<td>IFREMER</td>
<td>France</td>
</tr>
<tr>
<td>Isobel Yeo</td>
<td>NOC - National Oceanography Centre</td>
<td>United Kingdom</td>
</tr>
</tbody>
</table>

Annex 2: External reviewers and additional contributors

<table>
<thead>
<tr>
<th>NAME</th>
<th>INSTITUTION</th>
<th>COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTERNAL REVIEWERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>David Coetzee</td>
<td>National Emergency Management Agency</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Sarah-Jayne McCurrach</td>
<td>Earthquake Commission</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Dimitris Sakellariou</td>
<td>Hellenic Centre for Marine Research</td>
<td>Greece</td>
</tr>
<tr>
<td>ADDITIONAL CONTRIBUTORS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daniele Casalbore</td>
<td>University of Rome ‘Sapienza’</td>
<td>Italy</td>
</tr>
<tr>
<td>David Casas</td>
<td>ICM-CSIC - Institute of Marine Sciences, CSIC</td>
<td>Spain</td>
</tr>
<tr>
<td>Gemma Ercilla</td>
<td>ICM-CSIC - Institute of Marine Sciences, CSIC</td>
<td>Spain</td>
</tr>
<tr>
<td>Paolo Tommasi</td>
<td>CNR-IGAG - Institute of Environmental Geology and Geoengineering, CNR</td>
<td>Italy</td>
</tr>
</tbody>
</table>
Cover Photo: Plume of discoloured water rising to the surface during the 2011 submarine eruption of the volcano Tagoro, in front of the town La Restinga, El Hierro Island.

Credit: Antonio Márquez - Instituto Volcanológico de Canarias (INVOLCAN)