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The European Marine Board is an independent and self-sustaining science policy interface organisation that currently 

represents 34 Member Organizations from 18 European countries. It was established in 1995 to facilitate enhanced 

cooperation between European marine science organizations towards the development of a common vision on the 

strategic research priorities for marine science in Europe. The EMB promotes and supports knowledge transfer for 

improved leadership in European marine research. Its membership includes major national marine or oceanographic 

institutes, research funding agencies and national consortia of universities with a strong marine research focus. Adopting 

a strategic role, the European Marine Board serves its member organizations by providing a forum within which marine 

research policy advice is developed and conveyed to national agencies and to the European Commission, with the 

objective of promoting the need for, and quality of, European marine research.
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Foreword

Whether you are familiar with the term or not, big data are part of everyday 

life for the majority of citizens. We routinely use navigation apps on our 

smartphones, are inundated with targeted advertisements on social media, 

and recently, tracking using big data is a strategy in some countries to manage 

the spread of the novel coronavirus. However, various projects, business 

professionals and vendors often use the term ‘big data’ quite differently 

making the definition difficult to establish. The concept of big data gained 

momentum in the early 2000s and is now becoming critical to provide policy-

makers with the tools they need to make well informed, evidence based 

decisions in real-time. It is important now more than ever to effectively 

understand and manage the multitude of threats the ocean faces in a timely 

manner, given that the window of opportunity to take effective action is 

diminishing. The UN Decade of Ocean Science for Sustainable Development (2021-2030) provides an opportunity to 

improve the uptake of ocean science in sustainable development. Preserving the ocean health requires open access to 

data to ensure efficiency of activities and, importantly, transparency. Big data will play an essential role during the Ocean 

Decade in participating in a digital revolution in ocean data, providing new insight into the complexities of the ocean, and 

increasing our knowledge and tools for the sustainable management of human impacts on marine resources.

Given the rapid advancements and digitalization of ocean technologies and data collection, in 2017 the European Marine 

Board (EMB) identified big data as an area of interest. In May 2019 the EMB working group on ‘Big Data in Marine Science’ 

kicked-off with a meeting in Ostend. This Future Science Brief is the primary output of the working group. It aims to 

raise awareness of big data, give some examples of its potential applications in marine science, and identifies actionable 

recommendations needed to fully bring marine science into the world of big data. 

On behalf of the EMB membership, I would like to thank the members of the EMB working group on Big Data in Marine 

Science (Annex I) for their hard work and expertize in contributing to this Future Science Brief. I would also like to thank 

the external reviewers (Annex II) for their constructive comments, and Dick Schaap for providing additional comments 

and input. My thanks go to the EMB Secretariat for their work in coordinating the working group and the synthesis 

and publication of this document, namely Britt Alexander, Sheila Heymans, Ángel Muñiz Piniella, Paula Kellett and Joke 

Coopman. Last but not least, I would like to thank the students from the Arteveldehogeschool in Ghent, Belgium - Jonas 

Willems, Maud Chiau, Cristian Moraru and Paul Dekeyser - for their work to design and produce the infographics that are 

included in this document. 

Gilles Lericolais 
Chair, European Marine Board
April 2020
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Executive summary

This document explores the potential of big data, i.e. large volumes of high variety data collected at high velocity, to 

advance marine science. Marine science is rapidly entering the digital age, as introduced in Chapter 1. Expansions in the 

scope and scale of ocean observations, as well as automated sampling and ‘smart sensors’, are leading to a continuous 

flood of data. This provides opportunities to transform the way we study and understand the ocean through more 

complex and interdisciplinary analyses, and offers novel approaches for the management of marine resources. However, 

more data do not necessarily mean that we have the right data to answer many critical scientific questions and to make 

well-informed, data-driven management decisions on the sustainable use of ocean resources. To increase the value of 

the wealth of marine big data, it must be openly shared, interoperable and integrated into complex transdisciplinary 

analyses, which can be based on artificial intelligence.  

The marine science community has not yet reached the big data revolution and the ‘data deluge’ introduces a unique set 

of challenges that are new to many marine scientists. This document identifies bottlenecks and opportunities related 

to data acquisition, data handling and management, computing infrastructures and interoperability, data sharing, big 

data analytics, data validation, and training and collaboration. Specific challenges should be overcome to ensure the 

maximum value of marine big data can be reaped. We present topics and case studies of some recent advances in the 

application of big data to support marine science that demonstrate these challenges and recommendations. Chapter 2 

covers climate science and marine biogeochemistry, with particular focus on European and global initiatives to integrate 

carbon and other biogeochemical data that are used to inform global climate negotiations. Chapter 3 discusses how big 

data could be used to create high-resolution, multidisciplinary habitat maps for planning new marine protected areas. 

Chapter 4 looks at marine biological observations including genetic sequences, imagery and hydro-acoustic data and calls 

for a globally connected network of long-term biological observations for more complex interdisciplinary analyses using 

big data. Chapter 5 addresses food provision from the ocean and seas with a focus on aquaculture and the management 

of sea-lice outbreaks and escaped, farmed salmon using artificial intelligence. 

RECOMMENDATIONS

DATA ACQUISITION  

Continued development of smart sensors for 
automated sampling and data processing as well 
as more e�cient data transfer, so more ocean data 
can be collected by machines rather than humans.

DATA SHARING
Data need to be open and data sharing should 
be incentivized between scientists, industry and 
governments. 

DATA HANDLING AND MANAGEMENT
Develop community standards and well-
designed data management plans ensuring 
Findable, Accessible, Interoperable and 
Reusable (FAIR) data. 

COMPUTING INFRASTRUCTURE 
AND INTEROPERABILITY
Marine data services need to be interoperable 
and incorporate cloud-computing, cloud-
storage, and analytical tools.

BIG DATA ANALYTICS AND DATA 
VALIDATION
Develop standardized algorithms and 
community maintained data sets that can 
be used for model training and calibration.

TRAINING AND COLLABORATION
Develop specialized training for marine 
scientists to adopt the use of arti�cial 
intelligence. Collaborations are needed 
between marine scientists and computer 
scientists. 
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To pave the way towards making marine science a big data-driven discipline, in Chapter 6 we recommend to: 

•	 Enhance data acquisition through the continued development of ‘smart sensors’ for automated sampling 

and data processing so that more marine data can be collected by machines. We also propose to increase 

the efficiency of data transfer to allow more real-time, or near real-time analyses and decision making;

•	 Enhance data handling and management through more widespread adoption of community data 

standards and well-designed data management plans based on Findable, Accessible, Interoperable and 

Reusable (FAIR) principles so that data are machine-readable. We also recommend the increased use of 

existing marine data management infrastructures;

•	 Increase data interoperability and accessibility by upgrading European marine data management 

infrastructures to handle and exchange more multidisciplinary and real-time data. These infrastructures 

should include more integrated cloud computing, data storage and big data analytical tools. We 

recommend increased participation of the European marine science community in development of 

Virtual Research Environments (VREs) and European Open Science Cloud (EOSC) initiatives. We also 

recommend that these infrastructures should be sustained in the long term and that there should be 

more cross-disciplinary fertilization of computing technology from multimedia and digital sectors;

•	 Improve data sharing between scientists, industry and governments through new incentives and 

protocols such as social networks or data impact factors;

•	 Increase the use of big data analytics and ensure data validation by developing close collaborations 

between data scientists and marine scientists, developing standardized models, and well-curated 

community data sets to train algorithms; 

•	 Develop specialized training on artificial intelligence by establishing new regional and global marine 

science networks and consolidating already existing networks. We recommend training data curators to 

maintain the quality of data feeding into artificial intelligence algorithms; and

•	 Increase collaborations between marine scientists, computer scientists, data scientists and data 

managers in the form of working groups and the involvement of data scientists in the design of marine 

research.
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1 Introduction

We have more ocean data than ever before, yet we do not have enough data to answer many critical 

scientific questions. Big data (see Box 1) offer the potential to revolutionize marine science, allowing the 

use of data in novel and innovative ways to enhance our understanding of the ocean and the impact of 

human activities.

1	 https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf

“We are drowning in information, while starving for wisdom. 

The world henceforth will be run by synthesizers, people able 

to put together the right information at the right time, think 

critically about it, and make important choices wisely.
 ”

(Wilson, 1998)

Box 1: What are big data?

The term 'big data' has been used to label data with different attributes and several definitions of big data have been proposed over 
the last decade (Curry, 2016). In this document, we use the most widespread definition, which describes big data as a three-dimensional 
approach: “Big data are high volume, high velocity, and/or high variety information assets that require new forms of processing to 
enable enhanced decision-making, insight discovery and process optimization (Laney 2001)1.

Big data are commonly described using the three 'Vs', which each introduce unique challenges for data processing:

Volume	 large quantities of data; 

Velocity	 high-frequency of incoming real-time data (e.g. the Internet of Things); and

Variety	 complex heterogeneous data originating from a wide range of data types and sources with different syntactic formats and 
schemas, usually requiring standardization before its use.

In this document we adopt two additional dimensions to describe big data:

Veracity	 trustworthiness of data and potential uncertainty due to ambiguity, inconsistency (e.g. sensor reading failures), 
incompleteness, data drift (i.e. change in input data), statistical inconsistency, and approximations (e.g. from data 
compression algorithms); and

Value	 understanding the costs and benefits of collecting and analyzing data to ensure that its value can be reaped.

https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
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In recent years, the observatory-based approach to marine science 
has increased in scale from regional to global. It has expanded in 
scope from traditional physical and biogeochemical observations 
to a more interdisciplinary approach that includes more levels of 
complexity from genes, individuals, populations, communities, 
ecosystems to the biosphere. This leads to high volume and 
high velocity data, with high variability. Several international 
observational initiatives like Argo2, Global Ocean Observing 
System3  (GOOS) or the Ocean Observatories Initiative (OOI4) are 
using a myriad of infrastructures including satellites, seafloor 
electro-optic cables, drifting buoys, floats, moorings, and gliders, 
alongside classical ship-based observations. These infrastructures 
have sensors installed that measure physical, chemical, biological, 
geological and geophysical parameters. This is leading to a deluge of 
heterogeneous data originating from monitoring and observations 
of the marine environment, from a spectrum of multidisciplinary 
projects and programs. Effectively using this data for management 
will require a big data approach. Next-generation ocean observing 
technologies, e.g. autonomous underwater vehicles (AUVs), will 
offer completely new avenues for studying marine ecosystems 
due to their high levels of automation, autonomy and precision, 
enabling them to sample larger areas of the ocean. These will 
have the capability to measure biological parameters, including 
-omics to measure DNA, RNA and proteins, and to acquire and 

preserve environmental DNA (eDNA), e.g. DNA collected directly 
from seawater, which will further increase the pace of data 
acquisition (Benedetti-Cecchi et al., 2018). Continual advances 
in these technologies will make spatio-temporal data richer and 
more ubiquitous, opening up opportunities for performing larger 
and more complex analyses that combine disparate scientific data 
across disciplines. One example is combining acoustic survey data, 
trawl survey data, fish catch data, and automatic identification 
system (AIS) data for vessel tracking (see Figure 1.1) to understand 
the impact of shipping noise on commercial fish landings. 
Artificial intelligence, machine learning, and data mining (see Box 
2) are needed to identify patterns in complex data for a deeper 
understanding of processes that is not possible with traditional 
methods. This can provide critical insights to help manage human 
impacts on the marine environment and its living resources, as 
well as increasing automation and efficiency for researchers, 
industry and data users at the science-policy interface. Artificial 
intelligence algorithms are beginning to be installed on-board Earth 
observation satellites to speed up data processing and transmission 
using 'Edge AI', meaning that algorithms are run locally on hardware 
devices where the data are collected. These advances, coupled with 
developments in ocean observation technologies, offer enormous 
potential to collect larger volumes of heterogeneous marine data in 
real-time, or near real-time.

WHAT ARE BIG DATA 

VOLUME
Large quantities of data.

VELOCITY
High-frequency of incoming real-time data.

VARIETY
Complex heterogeneous data originating 
from many di�erent data types and sources.

VERACITY
The reliability and quality of data feeding 
into big data applications need to be 
evaluated and maintained. 

VALUE
The ability to transform large volumes of high 
variety, high velocity data into valuable, 
actionable information for end-users.

2	 http://www.argo.net/
3	 https://www.goosocean.org/
4	 https://oceanobservatories.org/

http://www.argo.net/
https://www.goosocean.org/
https://oceanobservatories.org/
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Figure 1.1 Vessel density map created using automatic identification system (AIS) data. 

The United Nations has proclaimed a 
Decade of Ocean Science for Sustainable 
Development5, 6, (2021 – 2030) to ensure 
that ocean science guides and supports 
the 2030 Agenda for Sustainable 
Development and its 17 Sustainable 
Development Goals (SDGs). A global 
ocean data portal is a key priority for 
the Ocean Decade, to enable improved 
transfer of data and data products to 
end-users, thereby addressing some 
of the most critical societal challenges 
(Ryabinin et al., 2019). In addition, in 
Navigating the Future V the European 
Marine Board proposed a digital ocean 
twin where all historical and current 
data about the ocean could be uploaded, 
accessed, and updated in real-time and 
used in decision-making (European 
Marine Board, 2019). This digital ocean 
twin will require simulation modelling 
to address gaps in data, and hence 
flag associated uncertainties. It would 
integrate next-generation ocean 
observing technologies into a network 
of Ocean Internet of Things, within 
which data are made available and 
processed in real-time using artificial 
intelligence and cloud computing. 

5	 https://en.unesco.org/ocean-decade
6	 https://oceandecade.org/
7	 https://www.noaa.gov/media-release/noaa-releases-new-strategies-to-apply-emerging-science-and-technology
8	 https://rucio.cern.ch/
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The digital ocean twin could then be used by managers to make 
informed data-driven decisions regarding, inter alia, a sustainable 
ocean economy, targets for greenhouse gas emissions, fisheries 
and marine resource management options, and marine spatial 
planning. In the USA, the National Oceanographic and Atmospheric 
Administration (NOAA) has recently called for increased investments 
in artificial intelligence, unmanned observing systems, -omics, and 
cloud computing in order to make transformative advancements in 
their science and end-user products7. 

Big data are transforming our world and have compelled a 
paradigm-shift in how we face major societal challenges from 
climate change to public health. Currently, decisions and solutions 
are increasingly based on data-driven models with big data 
driving digital transformation and automation across all sectors in 

what has been termed the fourth industrial revolution. Real-time 
data processing allows rapid reactions to events, which is critical 
for many situations. From financial fraud to public security and 
environmental policy, big data will contribute to establishing a 
framework that enables a safe and secure digital economy (Zillner 
et al., 2017). Big data is transforming scientific research in fields 
such as astrophysics (e.g. the Large Hadron Collider), biomedicine, 
bioinformatics, climate science, and material sciences. Some fields 
such as astrophysics and biomedicine have more advanced unified 
frameworks for integrating heterogeneous data, cloud computing, 
and analysis tools and marine science can learn from these. 
For example open-source software frameworks, such as Rucio8  
(Barisits et al., 2019), are currently used in high-energy physics and 
to support Large Hadron Collider experiments to manage widely 
distributed heterogeneous data from different data centres.

https://www.millenniumassessment.org/en/index.html
https://oceandecade.org/
https://www.noaa.gov/media-release/noaa-releases-new-strategies-to-apply-emerging-science-and-technology
https://rucio.cern.ch/
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Box 2: Artificial intelligence, machine learning, deep learning and data mining

In order to extract information and knowledge from data, analysis is required, often through statistical methods. When dealing with 
big data, classic inferential statistics are not ideal because large volumes of data tend to render statistically significant false positive 
outcomes, and high uncertainty means more insight on causality is needed. As a result, such tests have limitations and drawbacks 
in the decision-making process. Dedicated methods that can cope with, and process, large and heterogeneous data sets and extract 
valuable information are therefore required. These include: 

Artificial intelligence 	 the theory and development of computer systems that are able to perform tasks or exhibit behaviour 
normally requiring human intelligence, such as visual perception, speech recognition, decision-making, and 
translation between languages. Artificial intelligence is an umbrella term that includes machine learning, 
machine reasoning and robotics; 

Machine learning 	 considered a subfield of artificial intelligence and statistics. It refers to algorithms that automatically learn to 
recognize complex patterns in new data sets, improve their performance from experience and produce models 
that have predictive power. Machine learning models are usually divided into supervised and unsupervised 
models, where the former is given known examples to learn from (e.g. images with a label) while the latter 
attempts to find structure from the data directly (e.g. group images by colour);

Deep learning 	 a subfield of supervised machine learning that refers to powerful machine learning algorithms able to learn a 
model with complex raw data as its input. This method has been very successful with highly non-linear data 
such as images. Classic image classification requires the operator to manually extract features in the form of 
summary characteristics from each image (e.g. dimensions, luminance, colour), which the algorithm can be 
trained on, while deep learning can learn directly from the pixels in the image;

Data mining 	 the process of discovering information from data through pattern recognition. It is built on several fields 
including machine learning, artificial intelligence, statistics, mathematical modelling and database activities. 
Data mining can extract useful insights that can both summarize the available data and provide actionable 
information to make crucial decisions.

Simplified diagram showing the relationship between artificial intelligence, 
machine learning, deep learning, statistics and data mining.

Deep 
Learning

Data Mining

Statistics

Machine 
Learning

Artificial 
Intelligence
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9	 https://datasetsearch.research.google.com/
10	 https://www.ices.dk/community/groups/Pages/WGMLEARN.aspx
11	 https://www.go-fair.org/fair-principles/

12	 https://github.com/FAIRMetrics/Metrics
13	 https://ec.europa.eu/info/sites/info/files/turning_fair_into_reality_0.pdf

Ocean data are collected by many different stakeholders including 
scientists, government organizations and private industries such 
as fisheries, aquaculture, and oil and gas. These include historical 
(e.g. time-series, publications) and real-time data. Once data has 
been acquired, it is important to ensure its maximum benefit can 
be derived and the principles of ‘capture once, use many times’ and 
the FAIR principles (Findable, Accessible, Interoperable, Reusable, 
see Box 3), are major targets to make ocean data sets available to 
user communities. Discovery of and access to aggregated data sets 
are important as well as analytical e-infrastructures that support 
complex transdisciplinary analyses. Several European initiatives 
for the management of ocean data have made significant progress 
in marine data accessibility and interoperability by developing 
standards and dedicated infrastructures (see Box 4). 

However, there is currently no unifying framework to realize the full 
potential of big data in marine science. Many data are scattered, 

fragmented, not publicly available, and sometimes discarded after 
a few years. Widening big data applications in marine science 
depends on increasing and improving strategies to search for and 
link distributed data (including historical data and real-time data). 
Google’s Data Search ToolTM, 9, is promising and allows searching, 
but not access to, distributed data sets. Access to data and the use 
of best practices across the data value chain (see Box 5) will also 
be important for the uptake of big data in marine science. This 
will allow increased use of machine learning in marine science, for 
which some examples are given in this document. The International 
Council for the Exploration of the Sea (ICES) working group 
‘Machine Learning in Marine Science’10 is focusing on reviewing 
current applications, new developments in machine learning of 
interest for marine science, and improved collaboration between 
data scientists and marine scientists to advance machine learning 
use and applications. These aspects are therefore not discussed in 
detail in this document.

Working with data of increasing volume and complexity introduces 
a set of data management challenges that require the widespread 
deployment of solutions. New skills are needed to cope with the 
‘data deluge’ since many scientists are spending a large proportion of 
their time on discovery and re-use of complex, heterogeneous data. 
This document provides advice on capacity building and initiatives 

to enhance the use and uptake of big data in marine science for 
Europe. We demonstrate some examples of current state of the 
art, challenges and potential future paths using societally relevant 
marine science topics and case studies. Data volume, velocity, 
variety, veracity and value (i.e. the ‘V’s’ we use to define big data) 
are discussed to varying degrees in each topic and case study.

Box 3: FAIR data

FAIR data principles describe standards of Findability, Accessibility, Interoperability and Reusability11. FAIR data are essential for large-
scale, machine-driven, multidisciplinary analyses to realize the full scientific and societal value of data. The widespread adoption of FAIR 
data principles requires a shift in research culture and technology. Metrics are also being developed to define and evaluate the FAIRness 
of data submitted to data networks, e.g. the FAIR metrics group12. For more recommendations on how to achieve the FAIR principles, 
see the ‘Final Report and Action Plan from the European Commission Expert Group on FAIR data’13. 

Image credit: Sangya Pundir, European Bioinformatics Institute, CC BY 4.0.

https://datasetsearch.research.google.com/
https://www.ices.dk/community/groups/Pages/WGMLEARN.aspx
https://www.go-fair.org/fair-principles/
https://github.com/FAIRMetrics/Metrics
https://ec.europa.eu/info/sites/info/files/turning_fair_into_reality_0.pdf
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14	 https://www.seadatanet.org
16	 https://www.euro-argo.eu/
17	 https://www.emodnet.eu
18	 https://www.ebi.ac.uk/ena
19	 http://marine.copernicus.eu/
20	 https://otc.icos-cp.eu/

21	 https://www.lifewatch.eu/home
22	 https://envri.eu/home-envri-fair/
23	 https://ec.europa.eu/digital-single-market/en/european-open-science-cloud
24	 https://www.blue-cloud.org/
25	 https://ec.europa.eu/digital-single-market/en/news/elements-data-value-chain-strategy

Box 4: Examples of European marine data management infrastructures

Several European initiatives funded and/or supported by the European Commission provide infrastructure for collecting and managing 
marine in situ and remotely sensed data for increased discovery, access and long-term data stewardship. These include SeaDataNet14 

(marine environment), Euro-Argo16 (ocean physics and marine biogeochemistry), EMODnet17 (bathymetry, chemistry, geology, 
physics, biology, seabed habitats and human activities), ELIXIR-ENA18 (biogenomics), Copernicus Marine Environmental Monitoring 
Service19 (CMEMS, ocean analysis and forecasting), ICOS-Ocean20 (carbon) and LifeWatch21  (biodiversity). Significant progress has been 
made during the past three decades to develop these infrastructures, which function in connection with national data centres and 
develop data standards. These infrastructures are developed and operated by research, governmental, and industry organizations from 
European states, and in close interaction with international initiatives on data management led by the Intergovernmental Oceanographic 
Commission (IOC), the World Meteorological Organization (WMO), the Food and Agricultural Organization (FAO), the Group on Earth 
Observations (GEO), the International Council for the Exploration of the Sea (ICES), and others. Each of these data infrastructures has 
established links to data originators and their data collections, facilitating data collection, validation, storage and distribution. Several 
also create data products and models, which are made available as services for external users including research, government and 
industry. These infrastructures are mostly complementary to each other, dealing with different data originators and/or different stages 
in the data value chain (see Box 5) from data acquisition to data products. They collaborate in EU projects such as ENVRI-FAIR22, which 
aims to analyze and improve FAIRness of data services for environmental research infrastructures, including marine science, in order to 
align with the requirements of the European Open Science Cloud23  (EOSC), as well as the Blue-Cloud Project24.

Box 5: The Data Value Chain

The Data Value Chain is a series of steps and information flows needed to generate value and useful insights from data (Curry, 2016). 
In addition to these steps, it is important to make well thought out decisions on the types of data to collect and to have good sampling 
design, which influences the end-use and value of data. The data value chain is the centre of the future knowledge economy, bringing 
opportunities of digital developments to traditional sectors as part of the Big Data Value Public Private Partnership (BDV PPP) (Zillner 
et al., 2017, European Commission 2013) as part of the Big Data Value Public Private Partnership (BDV PPP) (Zillner et al., 2017, European 
Commission 2013)25. The same value chain applies for exploiting the value from data within marine science, leveraging large volumes 
of complex and heterogeneous data originating from multiple data sources. The key steps in the data value chain are: 

Data acquisition  	 gathering, filtering and cleaning raw data before it can be put in data repositories, analysed and stored; 

Data analysis  	 making raw data available for decision-making. It involves exploring, standardizing, transforming and modelling 
data. This includes the use of machine learning and data mining approaches;

Data curation  	 the management of data over its lifecycle to ensure it meets quality requirements. It is performed by data 
curators that are responsible for ensuring trustworthiness, discoverability, accessibility and reusability of data;

Data storage  	 the persistent and scalable management of data to enable rapid access and end-user applications; and

Data usage   	 the activities and applications that use data e.g. increased automation for data analysis or decision-making based 
on data products.

Data 
Acquisition

Data 
Analysis

Data 
Curation

Data 
Storage

Data 
Usage

https://www.seadatanet.org
https://www.euro-argo.eu/
https://www.emodnet.eu
https://www.ebi.ac.uk/ena
http://marine.copernicus.eu/
https://otc.icos-cp.eu/
https://www.lifewatch.eu/home
https://envri.eu/home-envri-fair/
https://ec.europa.eu/digital-single-market/en/european-open-science-cloud
https://www.blue-cloud.org/
https://ec.europa.eu/digital-single-market/en/news/elements-data-value-chain-strategy
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Marine data routinely collected and synthesized from observations 
and models are used to deepen our understanding of the climate 
system to improve our predictive capability. Non-linear interactions 
and feedback processes operate within the climate system. Big 
data approaches are needed to connect disjointed data collection 
and analysis in an interdisciplinary manner, in what today remains 
the topic of different sub-disciplines (physical, chemical, biological, 
geological, social, etc.). Marine data have grown rapidly in volume 
and variety through the advancement of observing infrastructures 
(examples shown in Figure 2.1), all of which serve different aspects 
of value creation from monitoring physical, biogeochemical and 
biological states, to the understanding of processes and enhancing 
forecasting ability. Part of these data are collected to satisfy the 
requirement of Essential Climate Variables26 (ECV), which are needed 
to systematically observe Earth’s changing climate, and which 

increasingly incorporate biological and biogeochemical parameters 
defined by the Global Climate Observing System27 (GCOS). ECVs 
are informed by Essential Ocean Variables28 (EOVs) defined by the 
Global Ocean Observing System29  (GOOS) of the Intergovernmental 
Oceanographic Commission (IOC). These observational data, 
together with increasing outputs from model simulations and 
reanalysis products, cover broad disciplines of marine science 
(e.g. physical, biogeochemical and biological oceanography, and 
fisheries). To properly assess both direct and indirect impacts of 
climate change on the ocean, a fully integrated interdisciplinary 
approach is required. This section focuses on current initiatives 
working towards this vision via regional and global integration 
of marine climate and biogeochemical data, synthesis into data 
products, application of big data analytics, and use in global climate 
negotiations and other societal applications.

2 Climate and marine 
biogeochemistry 

The ocean supports life on Earth and is essential for regulating climate and absorbing excess heat and 

carbon originating from human activities (IPCC, 2019). Understanding how physical, biogeochemical and 

biological processes in the oceans will respond to and affect future climate change is therefore one of the 

most pressing grand challenges facing our society. Interest in emerging climate knowledge has expanded 

into the policymaking landscape. Impacts of climate change on the ocean include warming, stratification, 

sea-level rise, marine heatwaves, melting of sea ice, as well as deoxygenation, uptake of carbon dioxide 

(CO2) by the ocean, the associated ocean acidification and consequences on marine ecosystem services. 

The adoption of a big data approach has the potential to revolutionize our ability to predict climate change 

trends and their impacts on the ocean and society.

CLIMATE AND MARINE BIOGEOCHEMISTRY

Marine biogeochemical observational data 
have evolved in volume and diversity through 
advances in monitoring platforms and are 
increasing from regional to global scales. 

In some parts of the ocean climate and marine 
biogeochemical data are di�cult to collect. Machine 
learning can �ll in these gaps and predict where 
new observations are needed, as well as analyze 
outputs from complex climate models. 

Data collection and analysis need to be integrated 
and connected in an interdisciplinary manner to 
create data products that can be used in global 
climate negotiations and other societal applications.

We need a globally connected network of 
long-term biological observations to create and 
analyze big data for improved understanding of 
marine biodiversity under global change.

New biological data sources such as genetic sequences, imagery and hydro acoustic data 
will be used more frequently in the big data era. These rapidly generate enormous volumes 
of data and can be combined and analyzed using arti�cial intelligence. 

26	 https://public.wmo.int/en/programmes/global-climate-observing-system/essential-

climate-variables
27	 https://gcos.wmo.int/en/home

28	 www.goosocean.org/eov
29	 https://goosocean.org/

https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables
https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables
https://gcos.wmo.int/en/home
http://www.goosocean.org/eov
https://goosocean.org/
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Figure 2.1. Examples of marine climate and biogeochemical observing infrastructures that enable data collection that passes though the data value chain to 
provide information used by policymakers, including Remotely Operated Vehicles (ROVs), Autonomous Underwater Vehicles (AUVs), buoys, remote sensing 
and ships.

Collection of marine biogeochemical observational data has evolved 
considerably through the advancement of sensor development, 
autonomous platforms (e.g. moorings, gliders, surface drifting 
buoys, coordinated Argo profiling floats), remote sensing, etc., and 
increasing use of ships of opportunity that are fitted with sensors. This 
has further accelerated our understanding of the physical dynamics 

of the ocean and their interactions with biogeochemistry and 
biology.  European initiatives including SeaDataNet30, EMODnet 31  

and Copernicus Marine Environment Monitoring Service (CMEMS32) 
are crucial in the implementation of big data in marine science 
and the coordination of marine data collection, management and 
synthesis (see Box 4 and 6).

30	 https://www.seadatanet.org/
31	 https://www.emodnet.eu/
32	 http://marine.copernicus.eu/
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Box 6: Marine data infrastructures and initiatives for collating marine 
biogeochemical data

SeaDataNet is a pan-European infrastructure for the management, indexing and access to ocean data and data 
products obtained from research cruises and observations in European coastal waters, regional seas and the global 
ocean. Physical, geological, chemical, biological and geophysical data from National Oceanographic Data Centres 
(NODCs) can be accessed and discovered in SeaDataNet. SeaDataNet develops and promotes common data 

standards, vocabularies for metadata and software tools, and is compliant with the Infrastructure for Spatial Information in Europe 
(INSPIRE33 - a European Directive for developing common standards to easily share spatial information between public authorities in 
Europe through an online portal). This contributes to consistency in data quality, interoperability and FAIRness (Box 3). SeaDataNet 
standards also overcome the challenge of managing high volumes of high variety data and processing it into harmonized data 
collections. SeaDataNet has close cooperation with various ocean observing communities, including EuroGOOS and Euro-Argo34, and 
other marine data management infrastructures including EMODnet and CMEMS, to enable data exchange. 

Marine organic and inorganic carbon data are combined with a wealth of reanalysis and model forecasts, satellite 
data, and other in situ observations as part of CMEMS. Data are standardized and collated into comparable and 
searchable data sets. These data span decades and are complimented by physical and biogeochemical variables 

such as temperature, sea-level, chlorophyll concentration, primary productivity, and nutrient concentrations derived from Euro-
Argo, EuroGOOS Regional Operational Oceanographic Systems (ROOS35), SeaDataNet and several international observation portals 
and networks. Data are analyzed and transformed into value-added data products including maps, anomalies and other statistical 
information by CMEMS. This enables monitoring of changes such as harmful algal blooms, which are increasing due to climate change. 
Data products are useful for end-users in a wide range of applications related to understanding climate change impacts such monitoring 
and reporting for the Marine Strategy Framework Directive36 (MSFD) since some indicators are affected by climate change. CMEMS is 
working towards becoming the first Earth Observation programme that is artificial intelligence-ready by collating vast amounts of 
satellite data and data products and deploying a cloud-based platform to centralize access to data and analytical tools at scale via the 
Copernicus Data and Information Access Services (WEkEO DIAS37).

For climate related analyses, EMODnet Chemistry collates chemical observations from a consortium of 
organizations. It focuses on eutrophication, contaminants, marine litter and ocean acidification. Data are brought 
together for seawater, sediment and biota to support the MSFD and that are relevant for global climate change.

The ocean component of the Integrated Carbon Observing System (ICOS-Ocean38) is a European initiative specifically 
for coordination, standardization, and processing of in situ ocean greenhouse gas measurements, including for 
carbon dioxide and associated carbonate chemistry variables. This European research infrastructure coordinates 

data from 21 stations in seven countries, collected from diverse platforms such as ships of opportunity and fixed buoys in oceanic 
and coastal waters (Steinhoff, 2019). ICOS-Ocean collaborates with the cloud computing service provider European Grid Infrastructure 
(EGI39) to make carbonate chemistry and other data FAIR and publicly available in near real-time on a dedicated data portal. Data 
are saved in storage linked to the EGI Data Hub40, which can subsequently be used to perform near real-time estimates of marine 
greenhouse gas fluxes.

ICOS-Ocean contributes data and data management support to international synthesis efforts such as the Surface 
Ocean CO2 Atlas (SOCAT41) and the Global Data Analysis Project (GLODAP42). These initiatives create complementary, 
publicly available databases that synthesize data from multiple sources with regular updates. They have been 
developed through a bottom-up collaboration among ship-going marine carbon scientists worldwide. SOCAT 
annually releases publicly available data products which document the increase in the important climate variable 
global surface ocean partial pressure of CO2 (fCO2) (Bakker et al., 2016). GLODAP does the same for the full oceanic 
water column, and incorporates all ocean carbonate chemistry variables (fCO2, pH, total alkalinity, and total 
dissolved inorganic carbon), as well as other physical and biogeochemical measurements including temperature, 

salinity, oxygen and nutrient concentrations, and chlorofluorocarbon data (Olsen et al., 2019).

33	 https://inspire.ec.europa.eu/
34	 https://www.euro-argo.eu/
35	 http://eurogoos.eu/regional-operational-oceanographic-systems/
36	 https://ec.europa.eu/environment/marine/eu-coast-and-marine-policy/marine-strategy-

framework-directive/index_en.htm
37	 https://www.wekeo.eu/

38	 https://otc.icos-cp.eu/
39	 www.egi.eu 
40	 https://www.egi.eu/use-cases/research-infrastructures/icos/
41	 www.socat.info
42	 www.glodap.info

dap v2gl

https://inspire.ec.europa.eu/
https://www.euro-argo.eu/
http://eurogoos.eu/regional-operational-oceanographic-systems/
https://ec.europa.eu/environment/marine/eu-coast-and-marine-policy/marine-strategy-framework-directive/index_en.htm
https://ec.europa.eu/environment/marine/eu-coast-and-marine-policy/marine-strategy-framework-directive/index_en.htm
https://www.wekeo.eu/
https://otc.icos-cp.eu/
http://www.egi.eu
https://www.egi.eu/use-cases/research-infrastructures/icos/
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Many applications that use SOCAT and GLODAP (see Box 6) 
data products are based on machine learning. For example, 
multidisciplinary in situ observational data, such as marine 
carbonate chemistry variables, oxygen, and nutrients are difficult 
and expensive to collect from remote or inaccessible parts of 
world oceans. However, these measurements are required for 
the provision of accurate data on the role of the ocean in climate 
change. To address this, diverse interpolation methods, such as 
regression and neural networks, are used to fill the gaps (Rödenbeck 
et al., 2015). For example, measurements of temperature, salinity, 
and oxygen have been used to estimate carbonate chemistry 
variables (Bittig et al., 2018). Gap filling methods for the surface 
ocean typically determine relationships between sparse in situ 
observations (e.g. fCO2) and variables from remote sensing and 
reanalysis products with good spatial and temporal coverage (e.g. 
sea surface temperature). Neural networks and other gap filling 
methods using SOCAT data products enable quantification of ocean 
CO2 uptake in the Surface Ocean pCO2 Mapping Intercomparison 
initiative (SOCOM43; Rödenbeck et al., 2015). The resulting mapping 
products are verified against independent observations, where 
these are available, and are used to calculate the progression of 
ocean acidification using machine learning. Machine learning can 
also be used to identify and prioritize the type and resolution of 

urgently needed future observations or to help identify signal versus 
noise ratios in collected data, which gives more confidence as to the 
robustness of climate change trends inferred from available data. 

SOCAT and GLODAP estimates play a central role in informing and 
feeding into the Global Carbon Budget44, Intergovernmental Panel 
on Climate Change (IPCC45) reports and climate negotiations at the 
Conference of the Parties (COP) of the United Nations Framework 
Convention on Climate Change (UNFCCC46). Outcomes of these 
negotiations are then also considered by international bodies, e.g. 
the GCOS, who provide guidelines and strategies for future marine 
climate data collection to the observing communities (Figure 2.2).

The GLODAP and SOCAT synthesis products and associated 
mapping products are based on well-calibrated and highly 
accurate observations from ships and moorings. They are used to 
validate other measurements using machine learning e.g. from 
biogeochemical sensors on biogeochemical Argo floats and gliders, 
and for validation of ocean biogeochemical models within the 
framework of Observations for Model Intercomparisons Project 
(Obs4MIP47), Earth System Model Evaluation Tool (ESMValTool48), 
and the World Climate Research Programme Coupled Model 
Intercomparison Project (CMIP49).

43	 http://www.bgc-jena.mpg.de/SOCOM/
44	 https://www.globalcarbonproject.org/
45	 https://www.ipcc.ch/
46	 https://unfccc.int/process/bodies/supreme-bodies/conference-of-the-parties-cop

47	 https://esgf-node.llnl.gov/projects/obs4mips/
48	 https://www.esmvaltool.org/
49	 https://www.wcrp-climate.org/wgcm-cmip
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The Royal Arctic Line, a ship that has recorded pCO2, sea surface temperature and sea surface salinity data for the past 16 years on the Denmark-Greenland 
passage.

http://www.bgc-jena.mpg.de/SOCOM/
https://www.globalcarbonproject.org/
https://www.ipcc.ch/
https://unfccc.int/process/bodies/supreme-bodies/conference-of-the-parties-cop
https://esgf-node.llnl.gov/projects/obs4mips/
https://www.esmvaltool.org/
https://www.wcrp-climate.org/wgcm-cmip
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Scientific assessments and synthesis reporting

United Nations 
Framework Convention 

on Climate Change

Mapping, data assimilaton, modeling and forecasting 

Quality control and synthesis into data products
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Figure 2.2. The value chain that connects in situ oceanographic measurements of carbonate chemistry variables to climate negotiations. 

Insights from ocean observations need to be regularly communicated 
to the marine modelling community since data assimilation into 
models from both physical and biogeochemical observations has 
the potential to improve existing model projections. When model 
predictions are combined with data on marine ecosystem responses 
to multiple environmental and human pressures, they can provide 
policymakers and ecosystem managers with more relevant 
information on which to base key decisions, e.g. best-case fisheries 
management scenarios under given future climate projections 
(Serpetti et al., 2017; ICES, 2020). Understanding the complex spatial 
and temporal variability of the physical and biological dynamics of 
the ocean depends on numerous region-specific factors. Progress 

can be made by applying a combination of unsupervised machine 
learning with different models and observations to identify 
emergent patterns with spatial and temporal commonalities 
(Sonnewald et al., 2019). Machine learning can be used to identify 
and constrain projection biases in multi-model ensembles, which 
are linearly linked to observable variables (e.g. Goris et al., 2018). 
This allows reliable models to be identified, unreliable models to be 
rejected, and eventually reduces climate projection uncertainties. 
Additionally, machine learning can be applied on a suite of marine 
biogeochemical and ecosystem data to address complex societally 
relevant issues, e.g. to predict extreme or harmful marine climate 
events such as marine heat waves (Liu et al., 2016).
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Challenges and recommendations 

Big data are important for understanding the role of marine 
biogeochemistry in climate. Models are becoming increasingly 
complex and coping with the rapidly expanding variety, volume and 
complexity of ocean-model outputs is a key challenge. This leads 
to subsequent challenges for analysis using conventional methods. 
Climate is a dynamic and non-linear system that requires long-term 
observations. However, funding for in situ marine biogeochemical 
data collection, processing and synthesis is scattered, unstable 
and largely dependent on individual research grants. A further 
challenge for data collection is that valuable in situ ocean surface 
CO

2
 measurements are often not collected in nations’ Exclusive 

Economic Zones (EEZs), since gaining permission to carry out these 
activities is very time consuming. 

Without permission, shipboard scientists are required to switch 
off their instruments when entering countries' EEZs. International 
efforts are synthesizing marine biogeochemical observations into 
regional and global data products and into the international climate 
negotiation process. However, a key bottleneck is that many marine 
climate observations are not yet included in these syntheses, nor 
widely available via data repositories due to different data formats, 
questionable data veracity and a lack of understanding by scientists 
of the ethical reasons behind data sharing. Many groups have 
created best practices for data collection, management and storage 
but these are not yet all in a centralized place (Pearlman et al., 2019). 
For more information on the challenges and solutions related to 
sharing marine data see Pendleton et al. (2019).

To increase the uptake of big data in marine biogeochemistry and 
climate we recommend to:

•	 Adopt global operational data standards based on FAIR 

principles;

•	 Coordinate and centralize best practices for ocean 

observations;

•	 Motivate and educate data originators and funding 

agencies on the use of existing marine data 

infrastructures to enable all marine climate observations 

to be easily accessible and interoperable. This could 

be done by the more widespread use of Digital Object 

Identifiers (DOIs) allowing data to be cited;

•	 Increase collaborations between marine data 

management infrastructures and e-infrastructures, 

such as that between ICOS-Ocean50 and EGI51, to provide 

seamless tools to synthesize, summarize, visualize and 

analyse a wide variety of data;

•	 Adopt new analytical workflows such as the ‘zero 

download’ paradigm, where scientists process and 

analyse their data using cloud computing;

•	 Provide long-term funding for the continued provision of 

accurate in situ biogeochemical observations and their 

synthesis into climate research and international climate 

negotiations;

•	 Implement a high-level agreement for in situ surface 

ocean CO2 measurements (similar to that of weather 

observations), to increase their spatial and temporal 

resoltuion by including measurements in national EEZs;

•	 Establish official partnerships between marine scientists 

and industries, e.g. those operating commercial ships 

hosting scientists with their instruments and sensors, 

preferably with governmental supports, towards a long-

term commitment in high-quality data collections; and

•	 Increase interdisciplinary collaborations, e.g. among 

marine ecologists, biogeochemical and physical 

oceanographers, climate scientists, statisticians, socio-

economists, data managers and computer scientists. 

Such collaborations should integrate diverse data into 

data products such as Essential Climate Variables (ECVs), 

Essential Biodiversity Variable (EBVs) and Essential Ocean 

Variables (EOVs) with higher levels of accuracy and with 

broader applications.

50	 https://www.icos-cp.eu/observations/ocean/otc
51	 https://www.egi.eu/

https://www.icos-cp.eu/observations/ocean/otc
https://www.egi.eu/
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To design and create these MPA networks, and to manage specific 
MPAs, Marine Restricted Areas (MRA) or Fisheries Restricted 
Areas (FRAs), in-depth knowledge of the marine habitats and an 
adequately mapped seafloor is needed. Currently, less than 10% 
of the ocean is mapped in adequate resolution with modern high-
resolution technology. Big data will be important for achieving both 
the proposed networks of MPAs and the aim of the SeaBed 203053  
initiative: to make a map of the global ocean seafloor by 2030 using 
all available bathymetric data. This will require strong international 
cooperation with respect to data acquisition, sharing, assimilation 
and compilation. The use of the most modern technology for 
bathymetric data collection needs to be fostered worldwide. It 
will need to rely on acoustic technologies deployed from surface 
submerged vessels, ship to shore data transfer, data cloud storage, 
and new data-processing tools using machine learning. EMODnet 
bathymetry54 is the European counterpart for SeaBed 2030, for 

which it cooperates globally with the International Hydrographic 
Organization (IHO) and the International Oceanographic Data and 
Information Exchange (IODE). EMODnet bathymetry are now using 
a high-performance computing cloud platform for collaborative 
data analysis and processing. EMODnet bathymetry brings together 
data from bathymetric surveys into Digital Terrain Models (DTMs) 
for the European seas. SeaDataNet infrastructure is used to manage 
and gather the data sets and associated metadata. The maps are 
openly available for users to view and download. 

Big data will be invaluable in creating high-resolution habitat maps 
that combine bathymetry data with other multidisciplinary, large-
scale habitat data. This is demonstrated in the following case study 
on the Bari Canyon that focuses on creating local-scale habitat 
maps to inform the planning of a potential site for a new deep-sea 
MPA.

3 Habitat mapping for 
marine conservation

With advances in ocean observatories and the exponential growth in data acquisition, big data are 

becoming indispensable for marine conservation and the management of human activities. No area of the 

ocean is untouched by human activity (Jones et al., 2018) and the negative effects of e.g. climate change, 

unsustainable fishing, shipping and pollution are rapidly increasing (Halpern et al., 2019). Thus, there is an 

urgent need to ensure the protection of marine ecosystems in coastal and nearshore environments, and 

in offshore and deep-sea areas, including Areas Beyond National Jurisdiction (ABNJ)52 especially given the 

increasing interest from oil, gas, and mining industries to exploit the resources in these areas. To address 

this problem, ecologically coherent networks of Marine Protected Areas (MPAs) across vast spatial extents 

have been suggested (Grorud-Colvert et al., 2014), including in the deep-sea, with the International Union 

for the Conservation of Nature (IUCN) calling for 30% of the ocean to be designated as MPAs by 2030.

Using shared data from aquaculture farms, 
arti�cial intelligence can be used to predict 
the location and timing of sea-lice outbreaks 
so they can be treated.

Arti�cial intelligence can be used to develop 
facial recognition for �sh.

Automated surveillance systems in rivers 
could be used to sort wild salmon and 
escaped, farmed salmon using facial 
recognition.

 Farmed 
Salmon

wild
SALMON

MPA

Habitat maps often need to be created to help designate marine 
protected areas. Large volumes of heterogeneous data can be 
combined in online platforms with high computational power. 
Arti�cial intelligence can then be used to e�ciently identify 
marine habitats and create these maps.

52	 https://www.unep-wcmc.org/resources-and-data/governance-of-abnj
53	 https://www.gebco.net/about_us/seabed2030_project/ 54	 https://www.emodnet-bathymetry.eu

https://www.unep-wcmc.org/resources-and-data/governance-of-abnj
https://www.gebco.net/about_us/seabed2030_project/
https://www.emodnet-bathymetry.eu
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Italy

Figure 3.1: Left: Bathymetric map showing the location of the Bari Canyon in (red square). Right: Map showing the location of cold water corals and chemical 
weapon dumping points in the Bari Canyon.

The Bari Canyon case study 

The Bari Canyon is a deep-sea ecosystem located in the Southern 
Adriatic (Mediterranean Sea). It is home to cold-water corals and a 
hotspot for biodiversity and ecosystem functioning (D’Onghia et 
al., 2003), but is highly vulnerable and has a low recovery rate from 
environmental disturbances (Figure 3.1). It is also an essential fish 
habitat that is vital for reproduction, growth, feeding and shelter 
of commercial species (Sion et al., 2019). However, it is threatened 
by marine litter and the impact of fishing activity from bottom 
trawling and long line fishing. The Bari Canyon has not yet been 
selected for MPA designation, and there is debate on whether 
this should happen. Here we use the Bari Canyon as an example of 
data that can be used to help designate an MPA in this area. 

Habitat maps are important to support the design of adequate 
measures of protection and management for any MPA. Challenges 
exist for the acquisition of vast amounts of habitat data, the 
adoption of novel data management approaches to ease analysis 
and collaboration, the development of automated data analysis, 
and the creation of novel sensor technologies for near real-time 
environmental monitoring.

For the Bari Canyon, hundreds of gigabytes of high variety 
multidisciplinary and heterogeneous oceanographic data have 
been collected from a multitude of data sources (Figure 3.2). The 
integration and management of this multidisciplinary, complex 
data is a key big data challenge because the data are:

•	 In many heterogeneous data storage formats (e.g. the 

format for multibeam echosounder (MBES) raw data 

varies by device manufacturer), leading to difficulties 

with sharing data and use in downstream applications;

•	 Collected across different temporal scales (e.g. over a 

number of hours, days, months, seasons, years) creating 

complexities in raw data, processed and filtered data, 

and data products such as Digital Terrain Models; and

•	 In large volumes (raw data) and require significant data 

storage capacity and computational power for analysis.

Chemical weapon dumping points
Cold water corals
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Grab, box-corers, robotic 
arms and push corers collect 
seabed and biological samples. 
This provides data on macro- 
and micro-benthic epifaunal, 

infaunal components, and 
textural and compositional 
properties of the seabed.

Image credits: CNR ISMAR

Conductivity, temperature 
and depth (CTD) casts collect 

water samples and provide 
data on temperature, salinity, 
carbonate chemistry, nutrient 

concentrations and isotope 
composition. 

Image credit left: Artevelde Hogeschool, 
right: Paolo Montagna

Remotely Operated Vehicles 
(ROVs) acquire images and 
videos  that are needed to 

characterize the megabenthic 
communities and for habitat 

mapping.

Image credit right: Lorenzo Angeletti, 

CNR ISMAR

Mooring stations measure 
oceanographic variables 

including water characteristics, 
vertical particle fluxes, 

hydrology, suspended matter 
distribution, temperature, 
salinity and current speed.  

Image credits left: Hannes Grobe 
CC BY-SA 2.5, right: CNR ISMAR

Multibeam echosounders 
(MBES) produce 

high-resolution data on 
seafloor bathymetry and 

morphology with continuous 
coverage. This is fundamental 

for habitat identification. 

Image credits: CNR ISMAR

MBES backscatter measures 
the acoustic reflectivity of the 
seafloor and provides data on 

substrate composition.

Image credits: CNR ISMAR

Sub bottom profilers are 
single-channel systems used 
for shallow reflection seismic 

profiling to characterize 
sediment or rock on the 

seafloor.

Image credits: CNR ISMAR 

Device Data collected Description

Figure 3.2. Key data sources available for 
the design of a potential deep-sea MPA for 
the Bari Canyon.

https://creativecommons.org/licenses/by/2.5/
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To overcome challenges in data heterogeneity and fragmentation, 
and to enable efficient data integration, a database known as 
‘Spatial Relational Database Management System’ (RDBMS: 
Geodatabase55) was created for the Bari Canyon based on 
adapted INSPIRE56 guidelines, which includes WebGIS (i.e. a 
web-based version of a geographical information system) and 
a metadata catalogue. Integrated WebGIS services, reduce data 
heterogeneity and fragmentation. This RDBMS is accessible via a 
Virtual Research Environment (VRE, see Box 7), developed within 

the framework of the Horizon 2020 EVER-EST project57 (Figure 
3.3). The EVER-EST VRE is a multidisciplinary platform based 
on research objects, which aggregate information in a form 
that can be processed by both humans and machines and that 
follow FAIR data principles. Research objects provide the basis 
for the development of e-infrastructures for preserving, sharing 
and reusing scientific data and knowledge within and across 
communities (Garcia-Silva et al., 2019).

55	 http://gismarblack.bo.ismar.cnr.it:8080/mokaApp/apps/ismarBoApp/index.html?null
56	 https://inspire.ec.europa.eu/ 57	 https://ever-est.eu/

Figure 3.3. EVER-EST Virtual Research Environment (VRE) portal, which enables scientists to access and visualize data, and create, publish and geographically 
represent research objects. The research object hub (RO-HUB) portal collects and stores all research objects and includes functions to visualize research object 
quality, history, and metadata. Virtual machines contain data-processing tools and a workflow manager that enables users to run executable e-workflows.

Scientific Community

Solutions for data search/ access/ re-use/ share  

EVER-EST Portal

RO-HUB

Virtual Machines

Workflow Managers

WPS

Other platforms

Own PC

Data process

Abandoned fishing gear (ghost net).
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Box 7: Virtual Research Environments (VREs) and the European Open Science 
Cloud (EOSC)

Virtual Research Environments (VREs) are web-based data-sharing platforms based on cloud computing with integrated analytical 
tools, which are crucial for creating and analysing big data. They bring together scientific and computer science communities and 
are a powerful tool to help bridge the gap between marine researchers and European Open Science Cloud58 (EOSC) service providers 
i.e. e-infrastructures offering services for cloud computing. VREs are based on FAIR data principles and allow discovery, access, 
sharing, validation, processing and re-use of heterogeneous data, algorithms, results, and best practices within and between research 
communities and with the general public. These features overcome barriers for sharing data and information, and facilitate transition 
to open science. VREs are a key step towards integrating research into EOSC. 

EOSC aims to provide a centralized virtual environment for EU researchers to store, manage, analyse and re-use FAIR research data and 
data products across borders and scientific disciplines. Launched by the European Commission in 2016, it will leverage and federate 
existing e-infrastructures and scientific data infrastructure, making access to scientific data and outputs easier and more efficient. 
Several projects are developing parts of the EOSC including projects relevant for the planning of the overall approach and structure such 
as EOSC Pilot59, EOSC-hub60, and EOSC Secretariat61. There are striking differences in usage rates of EOSC services between different 
scientific domains and many more marine scientists could be engaged in building or utilizing potential EOSC services.

The Blue-Cloud project62 is part of ‘The Future of Seas and Oceans Flagship Initiative’ of the EU and aims to develop a thematic marine 
EOSC cloud as a pilot to demonstrate the potential of cloud-based open science for ocean sustainability. The project is developing a 
VRE for the collaborative integration, exchange and analysis of data from existing European marine data infrastructures including 
SeaDataNet63, EMODnet64, Euro Argo65, EurOBIS66, ICOS-Ocean67, EcoTaxa68, ELIXIR69, Euro-Bioimaging70 and European Nucleotide Archive 
(ENA)71, which are brought together with e-infrastructures including EUDAT72, D4Science73 and WEkEO DIAS74. It aims to develop a smart 
federation of blue data resources, computing facilities and analytical tools to provide researchers with access to large volumes of high 
variety data from in situ and remote sensing observations, data products and outputs of numerical models. This will be piloted through 
five demonstrators addressing societal grand challenges linked to the UN Decade of Ocean Science for Sustainable Development. The 
Blue-Cloud project will also develop a roadmap for the expansion and sustainability of these infrastructures by the EU, with input 
welcome from stakeholders. The implementation of effective handling of big data, data mining and machine learning are key challenges 
to be addressed. 

In addition to the Blue-Cloud project, the marine science community is beginning to use VREs more frequently. VREs are also developed 
and offered in the PlutoF platform75 for distributed management of complex biological data (Abarenkov et al., 2010), and is currently 
being developed to become a service for the EOSC as part of the EOSC-NORDIC76 project and the Nordic e-Infrastructure Collaboration 
(NeIC). SeaDataCloud77 (a collaboration between SeaDataNet and EUDAT) also works towards solutions for VREs and computational 
infrastructures. It is advancing SeaDataNet services and increasing their usage by adopting cloud and high-performance computing 
technologies in a collaborative environment with high analytical performance. European Strategy Forum on Research Infrastructures 
(ESFRI) infrastructures such as EMSO-ERIC78 and LifeWatch ERIC79 are also connecting scientific end-users to EOSC resources.

58	 https://ec.europa.eu/digital-single-market/en/european-open-science-cloud
59	 https://eoscpilot.eu/
60	 https://www.eosc-hub.eu/
61	 https://www.eoscsecretariat.eu/ 
62	 https://www.blue-cloud.org
63	 https://www.seadatanet.org/
64	 https://www.emodnet.eu/
65	 https://www.euro-argo.eu/
66	 https://www.eurobis.org/
67	 https://otc.icos-cp.eu/
68	 https://ecotaxa.obs-vlfr.fr/

69	 https://elixir-europe.org/
70	 https://www.eurobioimaging.eu/
71	 https://www.ebi.ac.uk/ena
72	 https://www.eudat.eu/
73	 https://www.d4science.org/
74	 https://www.wekeo.eu/
75	 http://plutof.ut.ee/
76	 https://www.csc.fi/-/eosc-nordic
77	 https://www.seadatanet.org/About-us/SeaDataCloud
78	 http://emso.eu/
79	 https://www.lifewatch.eu/

https://www.blue-cloud.org
https://eoscpilot.eu/
https://www.eosc-hub.eu/
https://www.eoscsecretariat.eu/
https://www.blue-cloud.org
https://www.seadatanet.org/
https://www.emodnet.eu/
https://www.euro-argo.eu/
https://www.eurobis.org/
https://otc.icos-cp.eu/
https://ecotaxa.obs-vlfr.fr/
https://elixir-europe.org/
https://www.eurobioimaging.eu/
https://www.ebi.ac.uk/ena
https://www.eudat.eu/
https://www.d4science.org/
https://www.wekeo.eu/
http://plutof.ut.ee/
https://www.csc.fi/-/eosc-nordic
https://www.seadatanet.org/About-us/SeaDataCloud
http://emso.eu/
https://www.lifewatch.eu/
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The EVER-EST VRE facilitates automated data processing and 
machine learning by providing the computational e-infrastructure 
to run algorithms and by encapsulating workflows for data 
processing within research objects. Approaches for automated 
analysis of bathymetric data using machine learning are being 
developed that are beneficial in terms of increasing time efficiency 
and reducing personnel effort. Examples include: 

•	 Bathymetric data reduction algorithms that minimize the 

size of data to be stored and thereby increasing the ease 

and efficiency of data analysis (Wlodarczyk-Sielicka & 

Stateczny, 2016);

•	 Machine learning to automatically classify and reject 

common types of background noise in sonar survey data 

and dramatically reduce processing time; and

●•	 Novel automated and semi-automated classification 

techniques to cope with the high volume and high 

diversity of bathymetry data, validated through physical 

samples and images. In the Bari Canyon a combined 

approach uses manual interpretation and automatic 

classification techniques such as the Remote Sensing 

Object-Based Image Analysis (RSOBIA) (Lacharité et al., 

2018). This reduces the time and human effort required 

for image segmentation while maintaining expert data 

analysis, which will always be necessary for accurate 

habitat mapping.

Increasing volumes of video footage obtained from Remotely 
Operated Vehicles (ROVs) in the Bari Canyon is currently manually 
annotated with the support of the ADELIE80 software from the 
Institut français de recherche pour l'exploitation de la mer (Ifremer) 
which georeferences the data. Manual annotation is extremely time 
intensive and presents a significant bottleneck (i.e. one working 
week per hour of video footage). This software would benefit from 
automated image recognition using machine learning (e.g. Piechaud 
et al., 2019), which requires further development of the algorithms to 
fully implement automated feature detection given the complexity 
of benthic habitats and species diversity (Qin et al., 2016). 

A further application of machine learning in the Bari Canyon is for 
the creation of habitat-suitability models using Bayesian analysis 
(Tantipisanuh et al., 2014). These models couple environmental 
data, hydrodynamic models, and ROV observations to characterize 
environmental conditions where potential cold-water coral sites 
may exist and are used to make decisions on measures for their 
protection (Bargain et al., 2018).

The Bari Canyon will be one of the test sites for the deployment 
of new long-endurance Autonomous Underwater Vehicles (AUV) 

within the framework of the H2020 Project ENDURUNS81 that will 
allow continuous spatial and temporal monitoring in the area. 
The AUV will be capable of operating for up to eight months and 
will integrate various sensors including a multibeam echosounder 
(MBES), sidescan sonars, a high-resolution camera, and Conductivity, 
Temperature and Depth sensors (CTDs). The AUV will be equipped 
with on-board algorithms, i.e. “Edge AI” that will automatically 
filter, remap, and compress collected data in order to reduce its 
volume while maintaining its resolution and content. Data will 
be categorized and stored wirelessly on SD cards in special pencil-
like bubbles, which can be ejected to the surface when required 
allowing more efficient data transmission. An unmanned surface 
vehicle (USV) will follow the AUV and transmit data to an onshore 
control centre. Further improvements in data transfer efficiency 
through satellite and high-bandwidth connection systems will 
be a key enabler. Trade-offs should be considered between the 
amount of data processed on-board a research vessel or onshore 
vs. on-board an AUV in order to maximize energy available for data 
collection.

80	 https://www.flotteoceanographique.fr/en/The-Fleet/Shipboard-software/ADELIE 81	 https://enduruns.eu/
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Challenges and recommendations
The Bari Canyon case study demonstrates the comprehensive 
data management and analysis needed for a multidisciplinary 
observatory system at a local level, with the aim of creating high-
resolution habitat maps for planning new marine protected areas 
using a big data approach. The need for continuous monitoring 
and subsequent advances in ocean observation equipment leads 
marine scientists to enter into the big data era with the acquisition 
of increasing volumes of data. Combining and centralizing large 
volumes of high variety data is a key challenge. Machine learning 
has the potential to replace some oceanographic devices with 
truly autonomous sensors that are able to extract information in 
real-time. However, it also introduces the risk of artefacts, errors 
and noise going unchecked with potential consequences in the 
misinterpretation of bathymetric and other features.

To increase use of big data for local-scale habitat mapping for 
marine conservation we recommend to: 

•	 Manage the data lifecycle using FAIR principles;

•	 Integrate and analyse data using VREs based on research 

objects;

•	 Increasingly adopt machine learning for data processing, 

analysis and modelling to reduce human intervention;

•	 Integrate data acquisition and analyses at each potential 

MPA site and at larger scales to design networks of MPAs;

•	 Continue development of novel technology, including 

satellite and high-bandwidth network connectivity, to 

increase data transfer efficiency and real-time, or near 

real-time data transfer; and

•	 Ensure data robustness and veracity and guide the use of 

machine learning by humans to minimize risks.

A Slocum Glider floats on the sea surface transmitting mission and sea state data via satellite to the IMEDEA (Mediterranean Institute for Advanced Studies) 
data facility. 
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The focus on complexity and larger spatio-temporal scales in 
marine biological research is increasing rapidly and is driven by a 
combination of new observation techniques producing a wealth of 
biological data, fast method development, increasing availability 
of high computational capacity, and the increasing adoption of an 
open science culture. These advances have rejuvenated the field 
of systems ecology and many other marine biological disciplines. 
However, the complexity of biological systems constitutes a major 
challenge for the scientific community in its attempt to structure, 
manage and link data. 

Prominent bottlenecks preventing marine biology and systems 
ecology from becoming a big data discipline include: 

•	 Lack of semantic concepts, e.g. phenotypes for marine 

species (Costello et al., 2015);

•	 Environmental DNA (e-DNA) are typically organized 

around samples, while conventional biodiversity data 

are organized around species. It is therefore difficult 

to integrate e-DNA data with global biodiversity data 

infrastructures, although some initial resources have 

been developed (e.g. Deck et al., 2017; Buttigieg et al., 

2019); and

•	 The absence of platforms for archiving and processing 

large amounts of marine image data, and linking these 

with global biodiversity data infrastructures. 

4 Marine biological 
observations

Biological observations need to improve radically to serve our understanding of marine ecosystems and 

biodiversity under long-term global change and multiple stressors (Benedetti-Cecchi et al., 2018). However, 

this is not trivial as biological properties are more difficult to measure and integrate compared to physico-

chemical parameters. The achievement of an extensive, coordinated, and standardized global network of 

biological observations is a key goal for the next decade and will enable scientifically viable data products 

relating to Essential Biodiversity Variables (EBVs, Kissling et al., 2018) and Essential Ocean Variables (EOVs, 

Miloslavich et al., 2018) It will also deliver critical data for descriptors of the Marine Strategy Framework 

Directive (MSFD) and other legislation for the management of marine biodiversity. 

CLIMATE AND MARINE BIOGEOCHEMISTRY

Marine biogeochemical observational data 
have evolved in volume and diversity through 
advances in monitoring platforms and are 
increasing from regional to global scales. 

In some parts of the ocean climate and marine 
biogeochemical data are di�cult to collect. Machine 
learning can �ll in these gaps and predict where 
new observations are needed, as well as analyze 
outputs from complex climate models. 

Data collection and analysis need to be integrated 
and connected in an interdisciplinary manner to 
create data products that can be used in global 
climate negotiations and other societal applications.

We need a globally connected network of 
long-term biological observations to create and 
analyze big data for improved understanding of 
marine biodiversity under global change.

New biological data sources such as genetic sequences, imagery and hydro acoustic data 
will be used more frequently in the big data era. These rapidly generate enormous volumes 
of data and can be combined and analyzed using arti�cial intelligence. 
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A deeper understanding of spatio-temporal trends remains 
limited when relying on conventional measurement methods 
such as abundance of individuals from sediment cores, dredging, 
and trawling samples as currently used in most of the national 
biological monitoring programs. As we enter the big data era, 
these methods need to be complimented with new biological data 
sources, including high-throughput imagery, hydro-acoustic data 
and genetic sequences. This section highlights the data sources 
and advances needed to move towards regionally and globally 
integrated data products based on marine biological observations.

Marine genomic observatories 
Between 2000 and 2020 a number of microbial planetary inventories 
took place resulting in massive reference data sets for marine 
genomics research. Examples include the Global Ocean Sampling 
Expedition (Rusch et al., 2007) and the Tara Ocean Expedition 
(Karsenti et al., 2011). These expeditions created large data sets, 
but they were generated only once. Such genetic inventories are 
currently complemented by genetic monitoring programs, which 
collect repeated measurements of the genetic content in a marine 
ecosystem (Davies et al., 2014). For example, the Ocean Sampling 
Day campaign began in 2013 and generates a continuously growing 
global data set on coastal microbial diversity every year on the same 
day (Kopf et al., 2015). 

More recently, genetic monitoring has expanded to measure benthic 
communities using Artificial Reef Monitoring Structures (ARMS), 
which may function as biological forecast systems for invasive 
species in the future82. ARMS are set up in proximity to marine 
research stations and left for two to four months, after which the 
species composition of settled recruitment organisms are analysed. 
These early observations inform machine learning algorithms 
designed to model suitable habitats and predict potential areas 
for further spreading of invasive species in European coasts. This 
relies on novel monitoring methods as well as thorough data 
management, allowing for interoperability between databases 
for genetic data (Barcode of Life Data Systems, BOLD83), species 
occurrences (Global Biodiversity Information Facility, GBIF84) and 
species taxonomy (World Register of Marine Species, WoRMS85), as 
well as access to computational resources. Linking measurements 
(i.e. raw and processed genetic data, images, derived species lists, 
estimates of quantity) with metadata (e.g. field and laboratory 
protocols) and downstream data products (e.g. species lists 
derived from the analysis of sequence data) are facilitated by the 
development of eco-genomic standards (Yilmaz et al., 2011) and 
eco-genomic databases (Deck et al., 2017). These linkages need to 
be further developed in the future. A Virtual Research Environment 
(VRE, PlutoF86, see Box 7) used in the European ARMS program was 
essential for creating and publishing very large and consistent data 
sets from individual and distributed efforts and providing links 
across the entire data lifecycle.
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83	 http://www.boldsystems.org/
84	 https://www.gbif.org/

85	 http://www.marinespecies.org/
86	 http://plutof.ut.ee/

Artificial Reef Monitoring Structures (ARMS) function as biological forecasts for marine invasive species. 
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Image and hydro-acoustic observatories 
As is described in the Bari Canyon Case study in Chapter 3, 
marine biologists are increasingly using autonomously operated 
technologies for data collection, which generate enormous 
volumes of data at ever faster speeds. This is especially the case 
for high-definition optical imagery coming from ROV’s, AUVs, 
drop-cameras, video plankton recorders, and drones as well as 
for hydro-acoustic data coming from passive hydrophones that 
collect data on underwater soundscapes, and active sonars such 
as single- and multi- beam echosounders, side-scanners, sub-
bottom profilers, and fisheries echosounders and sonars. The 
scientific potential of these technologies will change the modus 
operandi of the marine biological community in the near future. 
The combination of hydro-acoustic and camera-based systems 
allows scientists to extract biological information from marine 
ecosystems with unprecedented quantity and quality. As image 
and sonar-based research is revolutionizing the fields of marine 
biology and biodiversity monitoring, these methods impose 
completely novel demands on data management and processing. 
Machine learning methods can be used to increase processing 
efficiency. One example is the EcoTaxa87 database that has 
integrated supervised machine learning algorithms and human 
curation of plankton images, which are processed at a rate of 
several thousand per hour therefore allowing processing at scale. 
This database has been used to validate approximately 40 million 
occurrences of plankton throughout the world’s oceans.

Autonomous optical sensors and cameras will soon be collecting 
data at increased spatio-temporal scales and a systems architecture 
will be needed to integrate and analyse data that are geographically 
widely distributed (e.g. data and resources will need to be 
integrated regionally and globally from many local-scale habitat 
mapping projects like the Bari Canyon). This architecture should 
connect raw data, analysis platforms, and archiving resources. 
ESFRI programs LifeWatch88 and the European Marine Biological 
Resource Centre (EMBRC ERIC89) are currently addressing technical 
challenges that come with such systems architecture design. They 
are building service-oriented architecture that allows systems 
to be coupled, data to be exchanged, and links to be made with 
high-performance computing services, which is also the goal of 
the European Open Science Cloud (EOSC, see Box 7). In addition, 
regional e-infrastructures such as the Nordic e-infrastructure 
Collaboration (NeIC90) are supporting marine biologists in the 
same way. The seamless availability of data and computational 
resources is needed to allow marine biologists to develop more 

holistic and interdisciplinary approaches to investigate how entire 
communities of organisms interact with their physical environment 
and with human activities. For example, use-oriented simulations, 
or avatars, of entire social-ecological systems are being developed 
by the Islands Digital Ecosystems Avatars (IDEA) consortium (Davies 
et al., 2016).

The Swedish LifeWatch91 has a pilot system architecture (Figure 4.1) 
for the management of large volumes of hydro-acoustic and image 
data collected by various projects. In this case, scientists need to 
be able to make decisions on which data are valuable and worth 
archiving, and which are not. This becomes important when dealing 
with large volumes of data and is not an easy task since knowing 
which data will be most influential is a challenge. Archiving is 
easiest when raw data are linked with analysis platforms and 
archiving resources. Data sets deemed highly valuable will be 
accessible online (also known as hot storage), while less-used data 
sets will be stored offline (cold storage). Data management plans, 

87	 http://ecotaxa.obs-vlfr.fr
88	 https://www.lifewatch.eu/
89	 http://www.embrc.eu/

90	 https://neic.no/ 
91	 https://biodiversitydata.se/

A video plankton recorder, which is a semi-automated underwater 
microscope that records images of plankton in real-time. Machine 
learning is being developed to automatically classify the images.
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The EcoTaxa database uses machine learning algorithms to process plankton images at scale. 

http://ecotaxa.obs-vlfr.fr
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e.g. those promoted by Assemble Plus as part of ‘Open Research 
Data Pilot’92, contain useful information on whether the data are 
likely to be valuable. Analytical results will show whether the data 
were useful or not and the frequency of metadata searches will 
determine data value. All data sets are available for exploration 
using machine learning algorithms developed by the Ocean Data 

Factory consortium93. The end results are data products on the 
distribution and abundance of key ecological species, such as corals 
and sponges as well as signatures of human activities (e.g. trawling 
tracks and marine litter).

92	 http://www.assembleplus.eu/access/DMP
93	 https://scootech.se/odf/
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Machine learning algorithms e.g. Ocean Data Factory 

Autonomous and automated field work
e.g. Swedish Centre for 

Ocean Observing Technology

Data Management Plan (DMP)
e.g. Assemble Plus

Reference image libraries 
and annotation platforms for 

classification of images
e.g. Zoonuniverse

Archive for raw image data
e.g. Swedish National 

Data Service

Temporary high-performance
computing analysis workspace 

e.g. Ocean Data Factory

Biodiversity Data Portal
e.g. Analysis portal

Sample
data

Training
data

Raw data
sets

Data products,
(e.g. Species

distribution &
abundance) Scientific analysis

Metadata

Hot

Cold

Figure 4.1. Example of a systems architecture for management and processing of large volumes of image and hydro-acoustic data, currently piloted as part 
of Swedish LifeWatch. 

http://www.assembleplus.eu/access/DMP
https://scootech.se/odf/
https://scootech.se/odf/
https://scootech.se/
https://www.zooniverse.org/projects/victorav/the-koster-seafloor-observatory
https://snd.gu.se/en/catalogue/study/snd1069
http://analysisportal.se/
https://scootech.se/odf/
http://www.assembleplus.eu/
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94	 https://obis.org/manual/dataformat/
95	 https://eml.ecoinformatics.org/
96	 https://marinebon.org/

97	 https://geobon.org/
98	 https://gensc.org/
99	 https://ec.europa.eu/digital-single-market/en/european-open-science-cloud

Challenges and recommendations
The transition of marine biological research into a big data driven 
discipline and the generation of regionally and globally integrated 
data products for marine biological observations, and wider 
applications, will first require the creation of truly big data sets. 
Some marine biologists are already dealing with large data sets e.g. 
for image processing. However, at present most mainstream marine 
biologists are not yet facing problems with data management and 
processing that require e-infrastructures. Dealing with complex 
data is a more prominent challenge for marine biologists than 
dealing with large data sets. 

There are many advantages of applying big data approaches to 
biological data, such as ease of scaling-up acquisition of machine-
generated data, and reduced human biases in data collection and 
analysis. However, there are also considerable challenges such as 
lack of standardized data management and archiving practices, 
complexities of data processing and incomplete provenance trails 
preventing reproducibility of their biological interpretation. Another 
challenge for this community is the lack of taxonomic expertise to 
ground-truth machine learning algorithms and their results.

To transition marine biological research into a big data driven 
discipline and to improve marine biological observations we 
recommend to:
•	 Store and curate biological data in standardized 

data formats such as the DarwinCore94 schema with 

metadata captured with Ecological Metadata Language 

(EML95);

•	 Establish a sustainable, globally connected network of 

long-term biological observatories building on existing 

biological research infrastructures and scientific 

networks;

•	 Stimulate new initiatives from international programs 

that promote a culture for open science and build 

relationships of trust among researchers, and can 

support European data initiatives, such as e.g. the Marine 

Biodiversity Observatory Network (MBON96) from the 

Group on Earth Observation Biodiversity Observation 

Network (GEO BON97) and the Genomic Standards 

Consortium (GSC98);

•	 Increase the technical and semantic interoperability of 

existing marine data infrastructures; 

•	 Increase engagement of the marine science community 

with the European Open Science Cloud99 (EOSC) to allow 

more large-scale, interdisciplinary analyses and societally 

relevant data products by exploring more big data use 

cases; and

•	 Scrutinize the veracity of new biological data sources 

including imagery, hydro-acoustics, and genetic 

sequences and train experts in taxonomy to ensure high-

quality data feeding into big data applications.

Plankton community images taken using a CPR Flowcam at the Marine Biological Association.
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https://obis.org/manual/dataformat/
https://eml.ecoinformatics.org/
https://marinebon.org/
https://geobon.org/
https://gensc.org/
https://ec.europa.eu/digital-single-market/en/european-open-science-cloud
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The most well-known of these is Global Fishing Watch100 which 
uses on-board automatic identification systems (AIS) on fishing 
vessels to track fishing activity in real-time to monitor illegal, 
unregulated and unreported (IUU) fishing. Research applications of 
Global Fishing Watch data include investigating the spatial overlap 
between fishing effort and species of conservation interest, such 
as sharks, and the detection of global transshipment of catch 
from one vessel to another. Another good example is the National 
Oceanographic and Atmospheric Administration's (NOAA) online 
tool EcoCast101, which generates daily forecasts of the spatial 
distribution of migratory species, including sea turtles and blue 
sharks off the west coast of the United States. Commercial fishing 
vessels can consult EcoCast maps to identify areas that should be 
avoided to reduce bycatch102. In Europe, automated image analysis 
is being developed as a reliable and economical alternative to on-
board fisheries observers for monitoring catch-at-sea (James et 
al., 2019). The big data approach also holds considerable promise 
for the avoidance of protected species, species without any value 
and nuisance species in commercial fisheries catch. A cloud-based 

Bycatch Avoidance Tool is currently facilitating data sharing within 
a Scottish demersal fishery for mapping discards (BATmap)103. This 
data collation and dissemination capability is the first step towards 
forecasting the risk of bycatch, similar the EcoCast tool. 

Aquaculture is one of the fastest-growing food sectors, supplying 
approximately 50% of fish eaten worldwide104. The 2019 EU Fish 
Market report105 indicates that EU aquaculture production in 2017 
was similar to that of Norway, and that Norway is the main supplier 
of fish and seafood to the EU. Norway is home to the world’s largest 
salmon farming industry, and salmon is the main aquaculture 
species imported into the EU106. In 2018, Norway produced almost 
1.3 million tonnes of salmon107. Salmon in fish farms now outnumber 
wild salmon in Norway by a thousand to one, and a single salmon 
pen can contain up to 200,000 fish. While indisputably a commercial 
success, the growth of salmon farming is not without biological 
and environmental consequences. Among these concerns are 
pollutants (including organic matter, pharmaceuticals, and other 
chemicals), the spread of sea-lice and other diseases that can spread 

5 Food provision from seas 
and the ocean

Fisheries and aquaculture are fast growing food sectors that need to be managed sustainably to minimize 

environmental impacts and to meet both the sustainable development goals (SDGs) on zero hunger 

(SDG2) and life below water (SDG14). The potential of a big data approach to benefit sustainable seafood 

production is already being realized in a range of applications in both aquaculture and wild-capture 

fisheries. 

Using shared data from aquaculture farms, 
arti�cial intelligence can be used to predict 
the location and timing of sea-lice outbreaks 
so they can be treated.

Arti�cial intelligence can be used to develop 
facial recognition for �sh.

Automated surveillance systems in rivers 
could be used to sort wild salmon and 
escaped, farmed salmon using facial 
recognition.

 Farmed 
Salmon

wild
SALMON

MPA

Habitat maps often need to be created to help designate marine 
protected areas. Large volumes of heterogeneous data can be 
combined in online platforms with high computational power. 
Arti�cial intelligence can then be used to e�ciently identify 
marine habitats and create these maps.

100	https://globalfishingwatch.org/
101	https://coastwatch.pfeg.noaa.gov/ecocast/about.html
102	https://coastwatch.pfeg.noaa.gov/ecocast/
103	https://batmap.co.uk/rtr/

104	https://ec.europa.eu/fisheries/cfp/aquaculture_en
105	https://www.eumofa.eu/market-analysis
106	https://www.eumofa.eu/documents/20178/157549/EN_The+EU+fish+market_2019.pdf
107	https://www.ssb.no/en/fiskeoppdrett/

https://globalfishingwatch.org/
https://coastwatch.pfeg.noaa.gov/ecocast/about.html
https://coastwatch.pfeg.noaa.gov/ecocast/
https://batmap.co.uk/rtr/
https://ec.europa.eu/fisheries/cfp/aquaculture_en
https://www.eumofa.eu/market-analysis
https://www.eumofa.eu/documents/20178/157549/EN_The+EU+fish+market_2019.pdf
https://www.ssb.no/en/fiskeoppdrett/
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to wild populations, and the risk of salmon escaping from farms and 
breeding with wild populations thereby reducing their fitness. Big 
data can be used to mitigate these concerns and in the near future 
advanced data systems, sensors, and camera-based technology 
will be used to manage the entire aquaculture value chain from 
hatchery to consumer. The case studies in this section demonstrate 
current and future uses of big data for the management of sea-lice 
outbreaks and escaped salmon populations.
 

The AquaCloud Platform case study: 
predicting and managing sea-lice 
outbreaks  

Sea-lice are external parasites that kill juvenile salmon and reduce 
disease resistance in both juveniles and adults. Infection rates 
increased as global salmon farming expanded throughout the 
1980s and 1990s. The use of biopesticides provided a short-term 
solution but their efficacy declined due to increasing resistance. 
Currently, sea-lice pose a significant challenge to the growth of the 
global salmon farming industry. The scale of the sea-lice problem 
has spurred research into effective mitigation responses globally 
(Jackson et al., 2018). Big data are becoming a part of the industry-led 
solutions for combating sea-lice by taking advantage of the wealth of 
environmental and production-level data being collected in real-time.

AquaCloud108 is a digital platform that gathers data from salmon 
farmers across Norway with the long-term ambition to use machine 
learning to predict the timing and location of sea-lice outbreaks. This 
would allow salmon farms to implement more effective prevention 
measures and treatments. AquaCloud, launched in April 2017 by 
the Norwegian Centre of Excellence Seafood Innovation Cluster109, 
is hosted by the IBM Watson Data Platform110. The platform stores 
cage-level data provided routinely by salmon farming industry 
partners from 311 locations (2,657 cages; numbers from 2018) 
including data on the volume of salmon in cages, environmental 
information, feeding data, mortalities, and treatments. Each farmer 
has exclusive access to their own data and a say in whether or not 
they share non-sensitive data. Additional data are available to 
AquaCloud from BarentsWatch111, an online portal that aggregates 
data about Norwegian coastal and marine areas. The BarentsWatch 
Fish Health module includes monthly data for biomass and number 
of salmon from all fish farms in Norway. Physical oceanographic 
data, including water depth, turbidity, salinity, oxygen, temperature, 
and pH levels, available through online portals such as Copernicus 
Marine Environmental Monitoring Service (CMEMS)112 are used 
for short-term forecasts of sea-lice outbreaks based on physical 
circulation models. Predictive models of sea-lice abundance in space 

and time have also been developed by aquaculture researchers 
(Myksvoll et al., 2018) and may be useful to integrate into future 
operational forecasting.

The initial goal of AquaCloud was to develop machine learning 
algorithms for forecasting sea-lice outbreaks one, two and three 
weeks in advance. In collaboration with IBM, AquaCloud used a 
big data approach to forecasting sea-lice infestations, successfully 
predicting 70% of temporal variation in sea-lice outbreaks113. 
However, this exercise indicated that the underlying data quality 
limited the forecasting capability of the model and that the data 
provided by different farms needed to be of a more consistent 
standard. This insight highlights the need for convergence on ocean 
best practices throughout the ocean data value chain. Currently 
AquaCloud is building an open platform for sensor technology, 
which requires establishing industry standards and best practices 
for sensors and sensor deployment, etc. 

108	https://www.aquacloud.ai/
109	http://www.seafoodinnovation.no/ 
110	https://dataplatform.cloud.ibm.com/
111	https://www.barentswatch.no/en/

112	http://marine.copernicus.eu/
113	https://www.ibm.com/blogs/cloud-computing/2018/09/17/data-science-norway-fish-

farmers/
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Farmed salmon in a salmon pen.

https://www.aquacloud.ai/
http://www.seafoodinnovation.no/
https://dataplatform.cloud.ibm.com/
https://www.barentswatch.no/en/
http://marine.copernicus.eu/
https://www.ibm.com/blogs/cloud-computing/2018/09/17/data-science-norway-fish-farmers/
https://www.ibm.com/blogs/cloud-computing/2018/09/17/data-science-norway-fish-farmers/
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114	https://www.vitenskapsradet.no/Portals/vitenskapsradet/Pdf/Status%20of%20wild%20Atlantic%20salmon%20in%20Norway%202018.pdf

Challenges and recommendations
A key challenge that needs to be overcome to enable more big data 
applications in aquaculture is sharing business-critical data among 
commercial competitors. AquaCloud has shown real innovation in 
this regard. The incentive for competing aquaculture companies 
to share data is the common goal of mitigating impacts of sea-
lice on salmon production, which imposes significant costs for the 
industry. Increasing the data quality feeding the predictive models 
is also a key challenge.

To scale-up the big data approach for managing sea-lice outbreaks 
we recommend to:

•	 Develop smart sensors e.g. camera-based sea-lice 

counters, automated fish welfare monitoring systems 

and improved automated environmental monitoring 

systems to increase the temporal resolution of the 

biological and environmental data thereby allowing 

improvement in forecasting algorithms;

•	 Improve connectivity of sensors and data transfer for 

better monitoring data; 

•	 Use data standards and best practices based on FAIR 

principles across the whole ocean data value chain;

•	 Involve digital firms (such as IBM) for cross-industry 

collaboration and cross-fertilization of technology and 

expertize;

•	 Develop effective collaborations across government, 

industry, universities and the digital sector to deliver real-

time operational data analytics for forecasting sea-lice 

outbreaks; and

•	 Develop a viable and sustainable business model to 

maintain and scale-up monitoring networks.
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Salmon farm in Norway.

https://www.vitenskapsradet.no/Portals/vitenskapsradet/Pdf/Status%20of%20wild%20Atlantic%20salmon%20in%20Norway%202018.pdf
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115	https://blog.nature.org/science/2016/10/17/put-face-vanishing-fish-fishface-fisheries-science-technology-overfishing-data/

'Facial' recognition case study: 
automated surveillance of farmed 
salmon escapees

Over the last 10 years, average salmon escapees from aquaculture 
farms in Norway amount to 183,500 annually114. Large numbers 
of escapees pose a risk to wild salmon populations due to cross-
breeding, which erodes their genetic diversity and fitness, ultimately 
leading to reduced wild stock sizes and numbers of salmon available 
for fisheries. Efficient methods for monitoring and management of 
escaped salmon are required to reduce these negative impacts.

Like wild salmon, escaped farmed salmon migrate upriver to spawn, 
and rivers are monitored manually by having multiple people on 
site to capture, quantify, sort and eliminate them. Escaped salmon 
are easily identified because they tend to be better fed and are 
therefore larger and often also have damaged fins from brushing 
against pens. This monitoring method is costly and labour intensive, 
and even with significant resources allocated, it is only practical 
to monitor a few rivers. Monitoring also partly depends on data 
collected by recreational fishers, the timing and location of which 
is based on wild salmon abundance. However, escaped farmed 
salmon do not only occur during the fishing season. The sparsity 
and bias in sampling based on the timing of the recreational fishing 
season contribute to statistical inaccuracies and failure to detect 
many instances of salmon escapees. 

The most complete and comprehensive data on escaped salmon 
have come from the Etne River in western Norway. In 2013, a one-
way barrier known as a resistance-board weir trap was placed 
across the river, forcing all salmon migrating upstream to enter a 
collection cage. Once in the trap, the salmon are inspected, and 
the escapees registered and killed. The Etne River trap allows the 
continuous monitoring and collection of unique information about 
both wild salmon and escapees including size of individuals and their 
populations, timing of migration upriver, health status and sexual 
maturity. The Etne River trap is expensive to maintain because it 
requires frequent manual intervention to sort the escapees from 

the wild salmon. In addition, the sorting procedure is invasive for 
the fish as it involves temporarily trapping and handling.

FishFace is a 'facial recognition' application being developed using 
a machine learning algorithm to automatically identify fish species 
based on photographs that can be used as a 'photobooth' for accurate 
reporting in wild-catch fisheries115. Machine learning and 'facial 
recognition' could also be used to identify escaped salmon and to 
provide comprehensive automated monitoring systems of salmon 
populations in a non-invasive and cost-effective way. Salmon display 
unique patterns of pigmented spots and an algorithm can identify 
salmon individuals through automated image analysis (Stien et al., 
2017). Farmed salmon have more spots than wild salmon (Jørgensen 
et al., 2018) and deep-learning techniques could be developed to 
automatically differentiate the two. 

Rugged camera equipment, or 'action cams', are routinely used by 
scientists as they are highly cost effective (e.g. under €500) and 
there are associated computing and communications equipment 
with high-resolution imagery capabilities. An automated video 
surveillance system of the Etne River trap could be constructed at 
a much lower cost than the current surveillance system, including 
cameras, computing infrastructure, and data transfer, storage, 
and analysis. Using the proposed algorithms, current counting and 
sorting methods could be expanded to continuous monitoring 
at multiple sites in the river, and to an increase in the number of 
monitored rivers. Comprehensive, automated monitoring of rivers 
would significantly change our ability to monitor and manage the 
salmon farming industry and river ecosystems in general. 'Facial 
recognition' technology could drive the detection, identification, 
reporting and subsequent elimination of escaped farmed salmon. 
Correlating escapees with reports of escape from farms would allow 
verification of the fidelity of the reporting process, and to chart 
the behaviour of escaped salmon, helping us to implement more 
effective management measures. If this system was successful for a 
valuable resource such as salmon, the proposed surveillance system 
could also collect information about other aspects of the river e.g. 
other species of ecological and scientific interest. 
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Facial recognition and machine learning can be used to recognize individual salmon. 

https://blog.nature.org/science/2016/10/17/put-face-vanishing-fish-fishface-fisheries-science-technology-overfishing-data/
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Challenges and recommendations
Big data and machine learning could be used for large-scale 
data-driven management of escaped farmed salmon. Machine 
learning for automated analysis offers reduced costs and improved 
efficiency of the surveillance system. To move towards this vision, 
challenges of data transfer, storage and processing from a few 
thousand cameras would need to be addressed.

To implement the proposed big data-driven management of 
escaped, farmed salmon we recommend to:

•	 Develop automated data collection, storage and 

processing from many locations using appropriate 

standards and metadata based on FAIR principles;

•	 Make data accessible and aggregated with centralized 

analysis using cloud computing resources;

•	 Ensure high-quality images for the accuracy of the deep-

learning algorithms; 

•	 Use the increasing volumes of structured data to train 

algorithms and iteratively improve analyses;

•	 Develop an easy-to-use framework and sequence of 

pre-trained models for salmon identification, which will 

require a well-structured repository of algorithms with 

online tutorials and documentation;

•	 Integrate data management, cloud computing and 

machine learning into the aquaculture monitoring and 

management value chain by engaging key stakeholders; 

and

•	 Develop dedicated training programmes for personnel 

and support for interdisciplinary and cross-disciplinary 

projects to develop and retain the necessary 

competences for sustaining the proposed monitoring 

infrastructure.
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The Etne River trap, Norway. 
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Data acquisition
Marine data will increasingly be collected by machines, rather than 
humans. This will make marine science a big data driven discipline. 
Monitoring and observations of the marine environment are rapidly 
increasing due to an expanded scope from traditional physical and 
biogeochemical observations to a more interdisciplinary approach 
with the inclusion of genes, individuals, populations, communities, 
ecosystems and the biosphere. Physical and biogeochemical ocean 
data are collected automatically via sensors, autonomous platforms 
(e.g. moorings, gliders, surface drifting buoys, coordinated Argo 
profiling floats) and remote sensing, etc. A key challenge is to also 
enable the automated collection of biological data, i.e. genomics, 
imagery, and acoustics. A further challenge is the transmission 
ashore of the deluge of data originating from marine monitoring 
and observations.

To enhance data acquisition we recommend to:

•	 Support continued development of automated smart 

ocean sensors to work towards creating an Ocean 

Internet of Things, particularly for biological parameters 

(e.g. automated optical sensors), which are typically less 

well suited for automation. This will enable the collection

	 of truly big data sets for which more complex analyses 

can be carried out;  

•	 Develop and support infrastructure and training 

programs for autonomous and automated data 

collection and downstream processing and archiving; 

•	 Support advances in ocean observation technologies 

towards real-time, or near real-time, data transmission 

through improved satellite and high-bandwidth 

connection systems, such as 'Edge AI' where algorithms 

are run locally on hardware devices where the data are 

collected; and

•	 Ensure adequate, long-term funding for continuing 

collection of accurate in situ ocean observations and 

their synthesis for essential ocean predictions. This 

includes collection of physical, biogeochemical and 

biological observations. We also recommend increased 

partnerships with and engagement by marine industries, 

e.g. those operating commercial ships hosting scientists, 

their instruments and sensors. 

6 Recommendations for 	  
the future of big data  
in marine science

This document presents recent advances, challenges and opportunities for big data to support marine 

science. We highlight that the marine science community has not yet reached the big data revolution. To 

develop solutions to key societal challenges, there is an increasing need for more complex analyses across 

traditionally siloed disciplines and sectors. To achieve these goals we need to move towards increased 

digitalization and the adoption of big data in marine science. We have identified overarching challenges 

and recommendations within the categories of data acquisition, data handling and management, service 

interoperability, computing infrastructures and data accessibility, data sharing, big data analytics, training 

networks and collaboration, which we elaborate on below. 
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Data handling and management
The handling and management of large volumes of heterogeneous 
data generated from different observation-based infrastructures 
is a key challenge. Many parameters are measured using different 
observing platforms and sensors, and there are unique storage and 
archiving needs for raw data of complex origins.
Users of marine data infrastructures require high-quality data and 
clear provenance. This is driving the infrastructures to improve 
FAIRness of data and data products in anticipation of the deluge of 
big data and the increasing use of artificial intelligence and cloud-
based open science.

To enhance data handling and management we recommend to:

•	 Adopt community standards and well-designed data 

management plans for handling and documenting 

collected data and data processing steps to contribute 

to long-term data preservation and accessibility. This 

will ultimately allow data to be FAIR116 and therefore 

machine-readable. It will allow heterogeneous data to 

be shared and integrated from various sources through 

successful interoperability between data services. More 

complex analyses can then be performed on big data 

sets thereby increasing the value of data;

•	 Ensure transparency in data management, with a 

complete provenance trail throughout the data lifecycle. 

Data management plans should be defined by the goals 

of a research project or observation program and data 

should also be documented through metadata; 

•	 Include feedback loops in data management plans 

to converge towards best practices and standards 

to facilitate the sharing of information by providing 

identifiers, labels, and controlled vocabulary. The 

convergence towards community data standards and 

best practices is needed e.g. the development of ocean 

best practices for ocean observations. Cooperation 

between local and global scales is critical for the 

development and promotion of standards; 

•	 Design and implement data management plans 

in collaboration with marine data management 

infrastructures who provide standards and operate 

tools for submitting data and metadata to link data 

with upstream protocols (e.g. field/lab protocols) and 

downstream protocols (e.g. analytical algorithms) to 

facilitate data archiving; 

•	 Promote widespread adoption of FAIR data principles by 

data collectors through incentives. Data infrastructures 

should increasingly adopt DOIs so that data are citable, 

thereby encouraging data originators to share data with 

data infrastructures; and

•	 Further develop and expand the capabilities of marine 

data infrastructures so they are ready to host large 

volumes of heterogeneous data originating from 

different sources and formats i.e. a combination of 

structured and unstructured data varying in size and 

complexity.
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Smart ocean sensors will be important to transition marine science to a big 
data driven discipline.

116	https://www.go-fair.org/fair-principles/

https://creativecommons.org/licenses/by/4.0/
https://www.go-fair.org/fair-principles/
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Data service interoperability, computing 
infrastructures, and data accessibility

The integration and exchange of heterogeneous data sources is key 
for realizing big data applications for marine science. Infrastructures 
such as SeaDataNet, EMODnet, EurOBIS and CMEMS (see Box 4) 
represent very important building blocks for a unified European 
marine data infrastructure. However, many data originators 
and funding agencies are not yet making use of existing marine 
data management infrastructures for sharing data with a larger 
community of users. A lack of awareness and incentives to share 
data may be contributing factors. Progress is being made to provide 
cyber platforms with integrated access to data from multiple 
sources and high computational capacity for the marine science 
community and wider research communities, particularly within the 
framework of EOSC117 and European initiatives such as ENVRI-FAIR, 
Blue-Cloud, LifeWatch and Copernicus. These initiatives feature 
developments for Virtual Research Environments (VREs), which are 
mostly in pilot stages for marine applications and are promising for 
wider uptake by marine research communities as steps towards 
exploring the opportunities offered by EOSC. However, the majority 
of the marine science community are not yet aware of, and do not 
use, VREs or other cloud computing services.

To increase interoperability and data accessibility we recommend to:

•	 Incentivize and promote the use of existing European 

marine data management infrastructures by the marine 

science community to increase data accessibility, 

repurposing, and subsequent use in big data applications; 

•	 Further develop the interoperability of European marine 

data management infrastructures for handling and 

exchanging high variety, multidisciplinary data;

•	 Expand and upgrade services of European marine 

data management infrastructures in cooperation 

with e-infrastructures to include more computational 

infrastructure for cloud computing, data storage and 

access to big data analytical tools;

•	 Encourage cross-disciplinary fertilization of technologies 

between more advanced multimedia sectors and digital 

sectors with marine science to scale-up cloud computing 

initiatives for wider transdisciplinary applications;

•	 Promote increased participation of the marine 

community in the development and operation of EOSC 

and its services. This will require raising awareness, 

highlighting the benefits and encouraging marine 

scientists to identify use-cases that can benefit from 

cloud computing infrastructures through open EOSC 

calls. This will stimulate the creation and deployment 

of customized VREs that can guide marine scientists to 

make optimal use of new cyber opportunities; 

•	 Ensure interoperability of VREs to promote 

interdisciplinary collaboration and accelerate innovation, 

and provide resources to ensure their long-term 

sustainability; and 

•	 Further develop cooperation, interoperability and 

exchange of data and services including computational 

platforms, between European data infrastructures and 

international counterparts to facilitate common access 

to data on wider sea-basin and global scales. This will 

allow progress towards a ‘digital ocean twin’ that aligns 

with objectives of the UN Decade of Ocean Science for 

Sustainable Development118.

Data sharing
The importance of sharing data is becoming increasingly recognized 
as data should not only be understood by individual scientists or 
research teams, but also need to be open and transparent to the 
world. However, business-critical data are often confidential, e.g. 
sharing bycatch data or sea-lice data for fish farming. 

To enhance data sharing we recommend to:

•	 Identify new incentives for data sharing between 

scientists, industry, and governments to create a sense 

of community and trust in the provenance of data 

generated. This could be in the form of social networks or 

data impact factors;

•	 Promote and incentivize the widespread use of existing 

protocols and data management infrastructures for 

data stewardship and sharing within the marine science 

community; and

•	 Develop protocols to help recognize types of data 

that should be shared (e.g. those with no immediate 

economic value) and that do not need to be shared. Data 

collected by industry can be commercially sensitive and 

therefore policies are needed to incentivize data sharing 

while at the same time meeting industry requirements 

for confidentiality.

117	https://ec.europa.eu/research/openscience/index.cfm?pg=open-science-cloud
118	https://www.oceandecade.org/
119	https://www.ices.dk/community/groups/Pages/WGMLEARN.aspx

https://ec.europa.eu/research/openscience/index.cfm?pg=open-science-cloud
https://www.oceandecade.org/
https://www.ices.dk/community/groups/Pages/WGMLEARN.aspx
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Big data analytics and data validation
The production of increasingly large and complex data sets in 
marine science requires machine learning to process and identify 
emergent patterns, and to improve existing models. As the use of 
big data analytics becomes increasingly widespread there is also 
a need to be cautious of the potential introduction of error and 
biases, since models and algorithms are only as good as the data 
used to feed them and poor data quality is a significant challenge. 

To increase big data analytics and data validation we recommend to: 

•	 Develop close collaboration between data scientists and 

marine scientists to define the limits of big data analytics 

e.g. via networks proposed by the ICES Working Group on 

Machine Learning in Marine Science119;

•	 Maintain quality assurance of data submitted to marine 

data management infrastructures and for data that 

feeds into big data analyses. As the use of big data 

analytics increases in marine science, humans will play 

an increasingly important role in generating well-curated 

data sets. Well-trained data curators are needed to 

generate data sets for ground truthing and to validate 

results from big data analyses; 

•	 Develop standardized models and algorithms and use 

DOIs to incentivize sharing; and

•	 Develop well-curated, community-maintained data sets 

that can be used for training and calibration of machine 

learning algorithms.

Training and collaboration

Big data is a dynamic field, where analytical tools are constantly 
evolving. This leads to new challenges as these tools are largely 
unfamiliar to most marine scientists. Many marine scientists do 
not have in-depth training in data science and programming and 
may be overwhelmed by the myriad and sophistication of big data 

methods available as well as the requirements for developing 
effective data management plans. Decisions on which analytical 
method is the most appropriate to tackle a certain problem can be 
difficult and results from machine learning methods are difficult to 
interpret. 

To enhance collaborations and training for big data we recommend to: 

•	 Develop specialized training to empower marine 

scientists to adopt the use of machine learning in their 

work. This should encompass lifelong learning as well 

as training for the next generation of young marine 

scientists in advanced data science, big data analytics 

and programming; 

•	 Encourage active collaborations with data scientists, 

statisticians, computer scientists, and data managers,	

particularly for early-career scientists. This could be in 

the form of working groups, multidisciplinary teams 

and the involvement of data scientists in designing 

marine research to allow early identification of data, 

computational and analytical needs. We recommend 

aligned efforts across these communities to avoid 

duplication and reduce overheads at organizational and 

national levels; 

•	 Provide training on the use of VREs for marine scientists. 

This will foster more strategic partnerships between 

marine science and the European computer science and 

data science communities;

•	 Promote the training of data curators as well as improved 

training for scientists on the design and implementation 

of data management plans; and

•	 Establish and consolidate regional and global marine 

scientific networks to strengthen the development, 

training, and communication of big data in marine 

science.
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Specialized training programmes are needed to empower marine scientists to use machine learning in their work. 
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Abbreviations and Acronyms

ABNJ	 Areas Beyond National Jurisdiction

AI	 Artificial Intelligence

AIS	 Automatic Identification System

ARMS	 Artificial Reef Monitoring Structures

AUV	 Autonomous Underwater Vehicle

BATmap	 Bycatch Avoidance Tool for mapping discards

BOLD 	 Barcode of Life Data Systems

CMIP	 World Climate Research Programme Coupled Model Intercomparison Project

CMEMS	 Copernicus Marine Environmental Monitoring System

CO2	 Carbon Dioxide

COP	 Conference of the Parties

CTD	 Conductivity, Temperature, Depth sensors

DIAS	 Data and Information Access Service

DNA 	 Deoxyribonucleic Acid

DOI 	 Digital Object Identifiers

DTM 	 Digital Terrain Model

EBV 	 Essential Biodiversity Variable 

ECV	 Essential Climate Variable

eDNA 	 environmental DNA

EEZ 	 Exclusive Economic Zone 

EGI 	 European Grid Infrastructure

EMBRC	 European Marine Biological Resource Centre

EML	 Ecological Metadata Language

EMODnet	 European Marine Observation and Data Network

ENA 	 European Nucleotide Archive

EOSC	 European Open Science Cloud

EOV	 Essential Ocean Variable

ERIC	 European Research Infrastructure Consortium 
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ESFRI	 European Strategy Forum on Research Infrastructures

ESMValTool	 Earth System Model Evaluation Tool

EU 	 European Union

EurOBIS	 European Ocean Biogeographic Information System

EuroGOOS 	 European Global Ocean Observing System

EVER-EST	 European Virtual Environment for Research – Earth Science Themes

FAIR	 Findable, Accessible, Interoperable, Reusable

FAO	 Food and Agricultural Organization

fCO2 	 fugacity of Carbon Dioxide

FRA	 Fisheries Restricted Area

GBIF	 Global Biodiversity Information Facility

GCOS 	 Global Climate Observing System

GEO	 Group on Earth Observations

GEO BON	 Group on Earth Observations Biodiversity Observation Network

GLODAP	 Global Data Analysis Project

GOOS 	 Global Ocean Observing System

GSC	 Genomic Standards Consortium

H2020	 Horizon 2020

IBM	 International Business Machines Corporation 

ICES 	 International Council for the Exploration of the Sea

ICOS	  Integrated Carbon Observation System

IDEA	 Islands Digital Ecosystems Avatars

Ifremer 	 Institut français de recherche pour l'exploitation de la mer

IHO	 International Hydrographic Organization 

INSPIRE	 Infrastructure for Spatial Information in Europe

IOC	 International Oceanographic Commission

IODE	 International Oceanographic Data and Information Exchange

IPCC	 Intergovernmental Panel on Climate Change

IUCN	 International Union for the Conservation of Nature

IUU	 Illegal, unregulated and unreported
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MBES	 Multibeam Echosounder

MBON	 Marine Biodiversity Observatory Network

MPA	 Marine Protected Area

MRA	 Marine Restricted Area

MSFD	 Marine Strategy Framework Directive

NeIC	 Nordic e-infrastructure Collaboration

NOAA	 National Oceanographic and Atmospheric Administration

NODC	 National Oceanographic Data Centre

Obs4MIP	 Observations for Model Intercomparisons Project

OOI	 Ocean Observatories Initiative 

pCO2	 Partial Pressure of Carbon Dioxide

RDBMS	 Spatial Relational Database Management System

RNA	 Ribonucleic Acid

RO HUB	 Research Object Hub

ROOS	 Regional Operational Oceanographic Systems 

ROV	 Remotely Operated Vehicle

RSOBIA	 Remote Sensing Object-Based Image Analysis

SD	 Secure Digital 

SDG	 Sustainable Development Goal

SOCAT	 Surface Ocean CO2 Atlas

SOCIB	 Balearic Islands Coastal Observing and Forecasting System

SOCOM	 Surface Ocean pCO2 Mapping Intercomparison

UNFCCC	 United Nations Framework Convention on Climate Change

USV	 Unmanned Surface Vehicle

VRE	 Virtual Research Environment

WebGIS	 Web Geographical Information Systems

WMO 	 World Meteorological Organization

WoRMS	 World Register of Marine Species
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Glossary

Autonomous Underwater Vehicle – These are unmanned and autonomous vehicles that are deployed from vessels for 
survey missions at remote distances from the vessel.

Causality – The generation and determination of one phenomenon by another.

Cloud computing – This is where computation resources, such as data storage or computing power, is available on-
demand to users without the user needing to actively manage the resources. An example would be a data centre that is 
available to many users online

Cold Storage –  These are lower performing and less expensive storage environments holding data accessed less 
frequently, no longer in active use or that might not be needed for months, years, decades, or maybe ever.

Digital Terrain Models – These are 3D computer generated representations of a terrain's surface created from a terrain's 
elevation data.

Drop-cameras – These are high-resolution, standard or a wide view angle waterproof video recording devices. 

E-infrastructure – This is an abbreviation for electronic infrastructure and refers to any computational resource, network, 
software, support etc. that facilitates collaboration between research communities by sharing resources, data and tools 

Echosounder – This is a type of sonar used to map the seafloor and can be either single- or multi-beam. 

Eco-genomic – This is making links between specific organisms or genes and their environmental context. 

Edge AI – This is where AI algorithms are processed locally on hardware where the data are collected. An Edge AI device 
is able to operate without external connections and can process data independently.

Environmental DNA – This is genetic material obtained directly from environmental samples (e.g. soil, sediment, water).

Essential Fish Habitats – These are areas that are crucial for fish life stages i.e. areas where they spawn, breed, feed and mature.

Essential Biological Variables – These are derived measurements required to study, report and manage biodiversity change.

Essential Climate Variables – These are physical, chemical or biological variables or groups of linked variables that 
critically contribute to the characterization of Earth’ s climate.

Essential Biodiversity Variable – These are physical, biogeochemical, biological or ecosystem variables that critically 
contribute to the characterization of the ocean.

Fisheries Restricted Area – These are areas where fishing activities are banned or restricted to protect marine ecosystems.

Fisheries sonar – A sonar is a system that uses sound waves to detect objects underwater, in this case fish.

Georeferencing – This is where data are associated with a location or physical space.

GIS layers – This is a mechanism used to display geographic datasets from a Geographic Information System (GIS) 
containing groups of point, line or area (polygon) features representing a particular class or type of real-world entities. 

Gliders – These are a type of autonomous underwater vehicle that are deployed from vessels for survey missions at 
remote distances from the vessel. They typically do not have an engine, and instead use changes in buoyancy to move 
up and down through the water.

Ground-truthing – This is where in situ observation data is used to check the accuracy of e.g. remotely sensed data or 
results from a machine learning algorithm

Hot Storage – These are storage environments with fast and consistent response times to access data right away.

Invasive species –  These are organisms that are not native to an ecosystem.

Machine-readable – This refers to data which are in a form that a computer can process.
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Marine Protected Area – This is an area designated and effectively managed to protect marine ecosystems, processes, 
habitats and species, which can contribute to the restoration and replenishment of resources for social, economic and 
cultural enrichment.

Marine Restricted Area – Designated and effectively managed area in the marine environment in which one or more 
human activities (such as fisheries, aggregate extraction, water sports) are restricted.

Metadata – This is a supplementary set of data that describes and gives information about other primary data, e.g. the 
time and location at which the primary data was collected.

Neural Network – These are a set of algorithms, modelled loosely after the human brain, that are designed to recognize patterns.

Ocean Internet of Things – This refers to a network of smart, interconnected underwater objects that enable monitoring 
of vast, unexplored areas of the ocean.

Passive hydrophones – These are highly sensitive microphones designed to be used underwater for recording 
underwater sound.

Phenotype – This is a set of observable characteristics of an individual resulting from the interaction of its genotype 
with the environment.

Protocol – This is a defined procedure or set of rules.

Real-time data – This are data that are delivered immediately after collection.

Reanalysis product – This refers to the use of forecast models and data assimilation systems to 'reanalyse' archived 
observations, creating global data sets that describe the recent history of the atmosphere, land surface and oceans 
(consistent and convenient 'maps without gaps').

Research Objects – These contain and describe scientific data, workflows, methods, papers, documents, scientists 
involved and other important metadata. They support reliability, reproducibility, and interoperability of data and results. 

Remotely Operate Vehicle – This is a tethered underwater surveying, monitoring and/or sampling vehicle that is 
operated from a vessel

Ships of Opportunity – These are commercial or non-commercial vessels that may voluntarily agree to collect data or 
operate sampling equipment during their normal operations

Smart sensors – These are devices that take information from the physical environment and use built-in computing 
power to process that information before sending it to an information receiver. 

Soundscape – This is a description or perception of an acoustic environment, in this case of the sounds that can exist underwater.

Spatial Relational Database Management System – This is a program that allows the creation, updating, administration, 
management and to query a database of spatial objects. It is based on the relational model; an intuitive, 
straightforward way of representing data in tables.

Sub-bottom profiler – This is a type of acoustic seismic survey equipment used to determine physical seabed properties 
and characterize subsurface geological information.

Systems architecture – This is a conceptual model that describes the structure and behaviour of a system.

Vulnerable Marine Ecosystems – These are areas of the ocean that are considered hotspots of biodiversity and 
ecosystem functioning, and are also highly vulnerability to disturbances and have a low recovery potential 

Video plankton recorder – This is a semi-automated underwater microscope that records images of plankton in real-
time. It also collects conductivity, temperature and depth (CTD) data. 

WebGIS services – This is an advanced form of Geographic Information System (GIS) available as a web platform.

Workflow – This is a sequence of tasks that processes a set of data.



EMB FUTURE SCIENCE BRIEF

50

Annex I: Members of the European Marine Board Working Group on  

Big Data in Marine Science

Annex 2: External Reviewers

Annexes

NAME INSTITUTION COUNTRY

Working Group Chairs

Lionel Guidi 
Laboratoire d'Océanographie de Villefranche-sur-Mer 
(LOV), CNRS

France

Antonio Fernàndez Guerra
Lundbeck Foundation GeoGentics Centre, University of 
Copenhagen (current) 
Max Planck Institute for Marine Microbiology (previous)

Denmark  
 
Germany

Contributing authors

Dorothee Bakker University of East Anglia (UEA) United Kingdom

Carlos Canchaya University of Vigo Spain

Edward Curry National University of Ireland Galway (NUIG) Ireland

Federica Foglini Consiglio Nazionale delle Ricerche (CNR) Italy

Jean-Olivier Irisson
Laboratoire d'Océanographie de Villefranche-sur-Mer 
(LOV), CNRS

France

Ketil Malde Institute of Marine Research (IMR) Norway

C. Tara Marshall University of Aberdeen United Kingdom

Matthias Obst University of Gothenburg Sweden

Rita P. Ribeiro University of Porto Portugal

Jerry Tjiputra Norwegian Research Centre (NORCE) Norway

NAME INSTITUTION COUNTRY

Bjorn Backeberg EGI Foundation The Netherlands

Ghada El Serafy Deltares The Netherlands

Frank Muller-Karger University of South Florida USA

David Schoeman University of the Sunshine Coast Australia

ADDITIONAL CONTRIBUTIONS

Dick Schaap MARIS The Netherlands





  

European Marine Board IVZW 

Belgian Enterprise Number: 0650.608.890

Wandelaarkaai 7 I 8400 Ostend I Belgium

Tel.: +32(0)59 34 01 63 I Fax: +32(0)59 34 01 65

E-mail: info@marineboard.eu

www.marineboard.eu

Big Data 
in Marine 
Science

N° 6  April 2020Future Science Brief




