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THE BALTIC SEA AND ADAPTATION
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Salinity gradient forces organisms to
compensate or adapt

- Local adaptation shown in Baltic mussels,
fish, and phytoplankton

- Understanding adaptive capacity and
population structure helps to predict how
climate change might affect organisms

Study system: Coastal copepod Acartia tonsa
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Is Acartia tonsa locally adapted to salinty in the Baltic Sea?

FITNESS EXPERIMENTS GENE EXPRESSION POPULATION GENOMICS



Is Acartia tonsa locally adapted to salinty in the Baltic Sea?

FITNESS EXPERIMENTS GENE EXPRESSION



PHYSIOLOGY

Is there a difference in fithess at low salinity?
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Expose to low salinity

How many copepods survive?



EXPECTATIONS
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HIGHER SURVIVAL IN BALTIC COPEPODS

MORTALITY AFTER 24 H
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- What are the mechanisms behind salinity tolerance?
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TRANSCRIPTOMICS

How does gene expression differ between populations?
Is there a common/unique response to low salinity stress?
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DNA: all genetic
information
“blueprint”

&& RNA: transcript of DNA,
J/ coding for proteins

Protein = Phenotype

Transcriptomics = Analysis of all RNA transcripts at a given
time to understand what processes are active or inactive

control

low salinity

Sampling before
transfer to
treatments and
after 3h and 24 h



EXPECTATIONS

Adapted to low salinities
- less stress at low salinity

----- b passive =l active
=== jon flux =P water flux

\ Adapted to high salinities

- more stress at low salinity
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SOME SHARED BUT MANY UNIQUE TRANSCRIPTS

North Sea copepods have more
differentially expressed genes, especially
after 24 h

- Struggle to conform
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COMMON RESPONSE TO LOW SALINITY STRESS
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UNIQUE RESPONSE TO LOW SALINITY STRESS
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Differences in gene expression and KJ

fithess

- Local adaptation ﬁﬁﬁﬂ'ﬁﬁ

Tolerance to low salinity in both
populations
—> Osmoregulatory strategy By st

ONGOING: population genomics to
identify genetic basis and verify findings
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High resilience to environmental
stressors is evident in both populations
—> ensure survival and buy time for

adaptations to occur

Adaptive potential could help copepods
cope with future environmental change




QUESTIONS?

DFG C TransEvo

Q

GEOMAR

THANKS TO s

Reid Brennan

Jennifer Nascimento-Schulze
Georgia Avgerinou
Charlotte Strufe

Fabian Wendt

Diana Gill

Till Bayer

Frank Melzner

Jasmin Renz

Meike Stumpp

Sheena Chung

Gianina Consing

HPC @ CAU

RD3 @ GEOMAR

Scientists and crew aboard
cruise AL580



